Черенков Павел Алексеевич

Страница 1

Павел Алексеевич Черенков родился в Новой Чигле вблизи Воронежа. Его родители Алексей и Мария Черенковы были крестьянами. Окончив в 1928 г. физико-математический факультет Воронежского университета, он два года работал учителем. В 1930 г. он стал аспирантом Института физики и математики АН СССР в Ленинграде и получил кандидатскую степень в 1935 г. Затем он стал научным сотрудником Физического института им. П.Н. Лебедева в Москве, где и работал в дальнейшем.

Черенков обнаружил, что гамма-лучи (обладающие гораздо большей энергией и, следовательно, частотой, чем рентгеновские лучи), испускаемые радием, дают слабое голубое свечение в жидкости, которое не находило удовлетворительного объяснения. Это свечение отмечали и другие. За десятки лет до Черенков его наблюдали Мария и Пьер Кюри, исследуя радиоактивность, но считалось, что это просто одно из многочисленных проявлений люминесценции. Черенков действовал очень методично. Он пользовался дважды дистиллированной водой, чтобы удалить все примеси, которые могли быть скрытыми источниками флуоресценции. Он применял нагревание и добавлял химические вещества, такие, как йодистый калий и нитрат серебра, которые уменьшали яркость и изменяли другие характеристики обычной флуоресценции, всегда проделывая те же опыты с контрольными растворами. Свет в контрольных растворах изменялся, как обычно, но голубое свечение оставалось неизменным. Исследование существенно осложнялось из-за того, что у Черенков не было источников радиации высокой энергии и чувствительных детекторов, которые позднее стали самым обычным оборудованием. Вместо этого ему пришлось пользоваться слабыми естественными радиоактивными материалами для получения гамма-лучей, которые давали едва заметное голубое свечение, а вместо детектора полагаться на собственное зрение, обострявшееся с помощью долгого пребывания в темноте. Тем не менее ему удалось убедительно показать, что голубое свечение представляет собой нечто экстраординарное.

Значительным открытием была необычная поляризация свечения. Свет представляет собой периодические колебания электрического и магнитного полей, напряженность которых возрастает и убывает по абсолютной величине и регулярно меняет направление в плоскости, перпендикулярной направлению движения. Если направления полей ограничены особыми линиями в этой плоскости, как в случае отражения от плоскости, то говорят, что свет поляризован, но поляризация тем не менее перпендикулярна направлению распространения. В частности, если поляризация имеет место при флуоресценции, то свет, излучаемый возбужденным веществом, поляризуется под прямым углом к падающему лучу. Черенков обнаружил, что голубое свечение поляризовано параллельно, а не перпендикулярно направлению падающих гамма-лучей. Исследования, проведенные в 1936 г., показали также, что голубое свечение испускается не во всех направлениях, а распространяется вперед относительно падающих гамма-лучей и образует световой конус, ось которого совпадает с траекторией гамма-лучей. Это послужило ключевым фактором для его коллег, Ильи Франка и Игоря Тамма, создавших теорию, которая дала полное объяснение голубому свечению, ныне известному как излучение Черенкова (Вавилова – Черенкова в Советском Союзе).

Согласно этой теории, гамма-квант поглощается электроном в жидкости, в результате чего он вырывается из родительского атома. Подобное столкновение было описано Артуром X. Комптоном и носит название эффекта Комптона. Математическое описание такого эффекта очень похоже на описание соударений бильярдных шаров. Если возбуждающий луч обладает достаточно большой энергией, выбитый электрон вылетает с очень большой скоростью. Замечательной идеей Франка и Тамма было то, что излучение Черенкова возникает, когда электрон движется быстрее света. Других, по всей видимости, удерживал от подобного предположения фундаментальный постулат теории относительности Альберта Эйнштейна, согласно которому скорость частицы не может превышать скорости света. Однако подобное ограничение носит относительный характер и справедливо только для скорости света в вакууме. В веществах, подобных жидкостям или стеклу, свет движется с меньшей скоростью. В жидкостях электроны, выбитые из атомов, могут двигаться быстрее света, если падающие гамма-лучи обладают достаточной энергией.

Страницы: 1 2