Электродинамические усилия в элементах аппаратов

Страница 1

При коротком замыкании в сети через токоведущую часть аппарата могут протекать токи, в десятки раз превышающие номинальные. Эти токи, взаимодействуя с магнитным полем, создают электродинамические усилия (э. д. у.), которые стремятся деформировать проводники и изоляторы, на которых они крепятся. В некоторых случаях величина э. д. у. может достигать десятков тонн, при этом возможно даже разрушение аппарата.

Для определения э. д. у. используются два метода.

В первом методе

сила рассматривается как результат взаимодействия проводника с током и магнитным полем. Если элементарный проводник dl с токомi находится в магнитном поле с индукцией. создаваемой другими проводниками, то сила действующая на этот элемент, равна

(6.1)

гдеугол между векторами элемента dl и индукции В.

За направление dl принимается направление тока в этом элементе.

Направление индукции, создаваемой проводником, легко найти с помощью правила буравчика. Если винт буравчика движется вдоль тока в проводнике, то направление вращения рукоятки совпадает с направлением магнитной силовой линии, т. е. с вектором индукции.

Направление силы можно определить по правилу левой руки. Для этого левую руку располагают так, чтобы вектор индукции пронизывал ладонь, а направление тока в проводнике совпадало с четырьмя вытянутыми пальцами. Тогда направление силы будет указывать большой палец (рис. ).

Рис.6.1. Правило левой руки

Правило буравчика можно использовать и для определения направления результирующего вектора , следовательно, и направления силы.

Если рукоятку штопора вращать от вектора к векторупо кратчайшему расстоянию, то направление движения винта штопора совпадает с направлением силы, действующей на элемент с током

Для определения полной силы, действующей на проводник длиной l, необходимо просуммировать силы, действующие на все его элементы:

(6.2)

В случае любого расположения проводников в одной плоскости р = 90° уравнение упрощается:

(6.3)

Описанный метод рекомендуется применять тогда, когда можно аналитически найти индукцию в любой точке проводника, для которого необходимо определить силу.

Второй метод

определения э. д. у. основан на использовании энергетического баланса системы проводников с током. Если пренебречь электростатической энергией системы и принять, что при деформации токоведущих контуров или их перемещении под действием э. д. у. величина тока во всех контурах остается неизменной, то силу можно найти по уравнению

(6.4)

где электромагнитная энергия;

возможное перемещение в направлении действия силы F.

Таким образом, сила равна частной производной от электромагнитной энергии данной системы по координате, в направлении которой действует сила.

Электромагнитная энергия системы обусловлена как энергией магнитного поля каждого изолированного контура, так и энергией, определяемой магнитной связью между контурами.

Для системы трех взаимосвязанных контуров электромагнитная энергия

(6.5)

Здесь индуктивности контуров;

токи в контурах;

взаимоиндуктивности между контурами.

Первые три члена уравнения определяют энергию независимых контуров, вторые три члена характеризуют энергию, обусловленную магнитной связью.

Уравнение дает возможность рассчитать как силы, действующие в изолированном контуре, так и силу взаимодействия этого контура со всеми остальными.

Страницы: 1 2