Энергетическая щель

Страница 2

∆=mVFVc.

Рассмотрим рассеяние электрона с энергией еF + е' (точка А на рис. 12б). При рассеянии его кинетическая энергия уменьшится (левая красная стрелка), но одновременно возрастет потенциальная энергия на ∆ (правая красная стрелка) и суммарная энергия увеличится. Рассеяние становится энергетически выгодным только при значениях е' > ∆.

В изолированной электронной системе силы притяжения возникнуть не могут. Для их возникновения необходимо участие другой системы, с которой электроны могут взаимодействовать. Существо этого эффекта можно проиллюстрировать на следующей наглядной модели. Положим на установленную горизонтально упругую мембрану тяжелый шар. Под действием силы тяжести мембрана прогнется. Если теперь положить на мембрану второй шар, то пока расстояние между шарами велико, никаких сил взаимодействия между ними не возникает. Но как только один шар попадает в область упругой деформации мембраны, создаваемой вторым шаром (оба шара скатываются в одну лунку), на шары со стороны мембраны начинают действовать силы, стремящиеся сблизить шары до касания. При соприкосновении шаров энергия системы "мембрана−шары" становится минимальной. Величина "силы притяжения" определяется величиной изменения потенциальной энергии второго шара в результате упругой деформации мембраны, создаваемой его партнером. Чем мягче мембрана, тем сильнее шары связываются друг с другом. Заметим, что если мембрана абсолютно жесткая (не деформируемая), то шары с мембраной не взаимодействуют и сил притяжения не возникает.

Підпис: 
Рис. 13. Схема поляризации решетки при электрон-решеточном (электрон-фононном) взаимодейст¬вии. e — заряд электрона, VF — скорость движения электрона, x — амплитуда смещения ионов из по¬ложения равновесия после взаимодействия с эле¬ктронами.

Допустим теперь, что один шар движется, а создаваемая им деформация (например, в результате инерционности мембраны) отстает во времени и следует за шаром на некотором расстоянии. В этом случае потенциальная энергия системы будет минимальна, когда второй шар движется за первым на определенном расстоянии, находясь в создаваемой им лунке. Ситуация выглядит так, как будто один шар коррелирует движение второго.

Предположим, наконец, что по мембране хаотически движется несколько шаров и их кинетическая энергия такова, что они не локализуются в деформационных лунках. Однако каждый раз, когда какой-нибудь из шаров проходит через лунку, созданную одним из его коллег, его потенциальная энергия понижается на то время, пока он в ней находится. Величина общего понижения потенциальной энергии системы таких движущихся шаров будет, очевидно, определяться величиной изменения потенциальной энергии при каждом попадании в лунку и частотой таких попаданий.

Аналогичный процесс происходит при взаимодействии электронов с ионной решеткой (рис. 13). Электрон, пролетая между соседними ионами, притягивает ионы к себе (на рисунке штриховыми линиями обозначено положение смещенных ионов), в результате чего возникает поляризация решетки — область сжатия ионов, обладающая избыточным положительным зарядом. Время поляризации определяется периодом колебания атомов, то есть происходит за время T0/4 ≈ 10−13с (при частоте колебания атомов н0 ~ 1013 с0−1). За это время электрон удалится на расстояние о~ VFТ0/4 = 108 · 10−13 = 10−5 см, то есть на ~ 1000 Е. Когда другой электрон попадает в область поляризации (потенциальную яму), созданную первым электроном, его потенциальная энергия понижается. Можно также считать, что оба электрона притягиваются к области избыточного (поляризационного) положительного заряда и если силы притяжения к нему превышают силы экранированного кулоновского отталкивания этих электронов, возникает результирующая сила притяжения. Такое взаимодействие принято называть электрон-фононным. (Фононы — квазичастицы, описывающие энергетический спектр колебаний кристаллической решетки.)

Страницы: 1 2 3