Ферромагнитный материал на основе ZnSiAs2

Страница 3

tg[2(f-q)] = cos2d×tg2f (1)

, (2)

где 2d×-разность фаз на выходе, ij – магнитооптические константы - показатель преломления света в гематите (» 2,84 [2]) при L = 0. Поскольку разность фаз (2) равна: 2= 2h(n1 –n2)/, то зависимость ДП (n = n1 –n2 ) от величины магнитного поля в базисной плоскости (B

^С

3) можно представить, исходя из (1) и (2) в виде:

(3),

где слагаемое l./h учитывает дополнительный сдвиг фаз в 2p, возникающий в толстом образце по сравнению с тонким. Экспериментальная зависимость эффекта ДП ( Dn(В)) при фиксированном значении угла f = 22.5о от величины магнитного поля высокой однородности также представлена на Рис.2 (пуст.треуг.).

Рис. 5. Рис. 6.

Там же сплошной линией представлены результаты подгонки экспериментальных данных для ДП света методом наименьших квадратов. Это позволило определить значения констант, входящих в выражение (2) (L= 0,1740 T [3]): a12 - a11 » 1.02×10-2 T-2 , a14 + a15 » 4.8×10-9 T-2.

Для напыления нанокомпозитов использовались сплавные мишени Со, Co84Nb14Ta2, Fe41Co39B20 и Co45Fe45Zr10 размером 270 х 80 мм2 с закрепленными на ее поверхности пластинами из монокристалла кварца, алюмооксида или другого диэлектрика шириной ~ 9 мм, расположенными перпендикулярно продольной оси сплавной мишени. Неравномерное расположение навесок и конструктивные особенности оригинальной установки напыления позволили в одном технологическом цикле получить непрерывное распределение соотношений металлической и диэлектрической фаз композита. Пленки наносились на ситалловую подложку и имели толщину порядка 10 мкм. Измерения комплексной магнитной проницаемости проводились резонансным методом в диапазоне частот 15-150 МГц на образцах прямоугольной формы размером 2×60 мм2. Высокочастотное магнитное поле было приложено в плоскости пленки вдоль длинной стороны образца. Кривые намагниченности композитов измерялись вибрационным магнитометром при различной геометрии положения образца и внешнего постоянного поля подмагничивания. Измерение удельного электрического сопротивления выполнялось на образцах специальной формы потенциометрическим методом.

На зависимостях действительной (μ/) и мнимой (μ//) частей комплексной магнитной проницаемости наногранулированных композитов (Co40Fe40B20)Х(SiO2)100-X от содержания металлической фазы на частотах 30, 60, 90, 150 МГц можно выделить несколько характерных областей концентрации х, где наблюдается существенное различие в поведении μ/ и μ//. При концентрации х < 45 ат. % величина комплексной магнитной проницаемости составляет величину несколько единиц и практически не изменяется в широком диапазоне изменения содержания металлической фазы. Изменение кривых намагниченности для этих композитов показывает характерные зависимости, свойственные для суперпарамагнетиков. В этом случае магнитный момент каждой гранулы направлен вдоль оси легкого намагничивания частицы в одном из двух эквивалентных направлений (в случае одноосной магнитной анизотропии) и не коррелирует с намагниченностью соседних гранул. В общем случае скорость разрушения магнитной упорядоченности после снятия магнитного поля зависит от температуры, величины поля анизотропии гранулы и силы дипольного взаимодействия между магнитными частицами в композите.

Так как в исследуемых композитах (Co40Fe40B20)Х(SiO2)100-X ферромагнитные гранулы состоят из сплава Co40Fe40B20, который имеет аморфную структуру, можно предположить, что поле анизотропии будет иметь меньшую величину по сравнению с кристаллическими частицами из-за отсутствия кристаллографической анизотропии. При этом увеличение концентрации металлической фазы приведет к ферромагнитному упорядочению композита при комнатной температуре несколько раньше, чем электрический порог перколяции.

При концентрациях металлической фазы от 42 до 53 ат. %, на концентрационных зависимостях комплексной магнитной проницаемости как для μ/, так и μ// мы наблюдаем хорошо выраженный перегиб. Структура композитов данного диапазона концентрации характеризуется наличием кластеров соприкасающихся ферромагнитных частиц и отдельными изолированными гранулами, магнитное дипольное взаимодействие между которыми приводит к объемному магнитному упорядочению при комнатной температуре. Кривые намагничивания композитов (Co40Fe40B20)Х(SiO2)100-X при данных концентрациях уже не описываются функцией Ланжевена и характеризуются зависимостями, типичными для ферромагнитных сплавов. Однако значения комплексной магнитной проницаемости для данного диапазона концентраций остаются достаточно низким (<50).

Страницы: 1 2 3 4 5