Физические особенности дугового разряда при высокой плотности газовой среды

Страница 2

При условии однородности дугового столба последний член — напряжение на дуговом столбе — может быть представлен как произведение напряженности электрического поля Е на длину канала дуги.

Катодное падение

сосредоточено на очень небольшом участке дуги, непосредственно примыкающем к катоду (около 0,001 мм при нормальном атмосферном давлении). Оно составляет величину порядка 10 –20 В, следовательно, средняя напряженность электрического поля у катода достигает величины порядка 105 В/см и выше. При таких напряженностях выход электронов с поверхности катода может осуществляться в значительной степени за счет автоэлектронной эмиссии. Если материал катода таков, что температура его кипения может превысить 2500° К, то эмиссия электронов с поверхности катода может происходить и за счет термических процессов (термоэлектронная эмиссия). При этих условиях выход электронов с катода обеспечивается и при более низких падениях напряжения у катода. В этом случае катодное падение является не прямой причиной выхода электронов с катода, как при автоэлектронной эмиссии, а косвенной, обеспечивающей выделение около катода необходимой энергии для подогрева катода.

Возможно и совместное существование термической и автоэлектронной эмиссии при нагретом катоде.

Дуга может существовать между металлическими электродами и при холодном катоде. В этом случае имеет место в основном автоэлектронная эмиссия.

Рис. 8.3. Распределение напряжения по длине электрической дуги

Возможен и такой механизм выхода электронов с катода, когда за счет высокой удельной плотности энергии в области околокатодного пространства возникает высокая степень термической ионизации газа. При этом электроны уходят в зону Дуговой плазмы, а положительные ионы, падая на катод, забирают электроны из катода, образуя нейтральные атомы. Таким образом создается электрический ток в цепи. Вполне вероятно, что при холодном катоде имеет место совместное действие автоэлектронной эмиссии и эмиссии за счет термической ионизации в околокатодном пространстве. Следовательно, каким бы ни был механизм освобождения электронов с катода, при всех условиях у катода должна совершаться работа, т. е. выделяться энергия, что и обеспечивается благодаря катодному падению напряжения.

Анодное падение напряжения имеет место в области, непосредственно примыкающей к аноду. Оно не является необходимым условием существования дугового разряда, так как задача анода относительно пассивная — принимать идущий к нему из зоны плазмы дуги электронный поток. Повышение же напряженности электрического поля у анода является следствием образования у анода пространственного отрицательного заряда из-за недостатка ионов у анода. Анод в дуговом разряде не излучает положительные ионы. Ионы же, возникающие в дуговом столбе, хотя и с небольшой скоростью, движутся к катоду, таким образом непосредственно у поверхности анода образуется преобладание отрицательных зарядов и создается условие для анодного скачка напряжения (анодного падения напряжения). Величина анодного падения напряжения зависит от температуры анода, рода металла и пр. Пришедшие из столба дуги электроны, нейтрализуясь на аноде, освобождают «работу выхода», затраченную ранее на выход электронов из катода. Часто температура анода бывает даже выше, чем температура катода.

Падение напряжения в дуговом столбе UCT представляет собой произведение напряженности электрического поля Е на длину столба l. Произведение напряженности электрического поля на ток в дуге определяет мощность, подводимую к дуговому столбу из сети на единицу его длины W = Ei.

При установившемся состоянии эта мощность равна мощности, рассеиваемой дугой в окружающее пространство Р, т. е. Р = W.

Страницы: 1 2 3 4