Генераторы постоянного тока

Страница 5

Генератор с последовательным возбуждением.

В генераторе с последовательным возбуждением (рис. 2.55, а) ток возбуждения Iв = Iа = Iн. Внешняя характеристика генератора (рис. 2.55, б, кривая 1) может быть построена по характеристике холостого хода (кривая 2) и реактивному треугольнику ABC, стороны которого увеличиваются пропорционально току Iн.

Рис. 2.55 – Схема генератора с последовательным возбуждением и его внешняя характеристика

При токах, меньших Iкр, с увеличением тока нагрузки возрастает магнитный поток Ф и э. д. с. генератора Е, вследствие чего увеличивается и его напряжение U. Только при очень больших токах Iн > Iкр напряжение U с ростом нагрузки уменьшается, так как в этом случае магнитная система машины насыщается и небольшое возрастание потока Ф не может скомпенсировать увеличенное падение напряжения на внутреннем сопротивлении ∑r. Поскольку в генераторе с последовательным возбуждением напряжение сильно изменяется при изменении нагрузки, а при холостом ходе оно близко к нулю, такие генераторы непригодны для питания большинства электрических потребителей. Используют их лишь при электрическом торможении двигателей с последовательным возбуждением, которые при этом переводятся в генераторный режим.

Рис. 2.56 – Схема генератора со смешанным возбуждением и его внешние характеристики

Генератор со смешанным возбуждением.

В этом генераторе (рис. 2.56, а) имеются две обмотки возбуждения: основная (параллельная) и вспомогательная (последовательная). Согласное включение двух обмоток позволяет получать приблизительно постоянное напряжение генератора при изменении нагрузки. Внешняя характеристика генератора (рис. 2.56, б) в первом приближении может быть представлена в виде суммы характеристик, создаваемых каждой из обмоток возбуждения. При включении только одной параллельной обмотки, по которой проходит ток возбуждения Iв1, напряжение генератора U постепенно уменьшается с ростом тока нагрузки Iн (кривая 1). При включении одной последовательной обмотки, по которой проходит ток возбуждения Iв2 = Iн, напряжение возрастает с увеличением тока Iн (кривая 2).

Подбирая число витков последовательной обмотки так, чтобы при номинальной нагрузке создаваемое ею напряжение ΔUпосл компенсировало суммарное падение напряжения ΔU при работе машины с одной только параллельной обмоткой, можно добиться, чтобы напряжение U при изменении тока нагрузки от нуля до Iном оставалось почти неизменным (кривая 3). Практически оно изменяется в пределах 2–3%. Увеличивая число витков последовательной обмотки, можно получить характеристику, при которой напряжение Uном > U0 (кривая 4); такая характеристика обеспечивает компенсацию падения напряжения не только во внутреннем сопротивлении ∑r генератора, но и в линии, соединяющей его с нагрузкой. Если последовательную обмотку включить так, чтобы ее м. д. с. была направлена против м. д. с. параллельной обмотки (встречное включение), то внешняя характеристика генератора при большем числе витков последовательной обмотки будет крутопадающей (кривая 5). Встречное включение последовательной и параллельной обмоток возбуждения применяют в сварочных генераторах и других специальных машинах, где требуется ограничить ток короткого замыкания.

Генераторы постоянного тока, выпускаемые отечественной промышленностью, имеют большей частью параллельное возбуждение. Обычно для улучшения внешней характеристики их снабжают небольшой последовательной обмоткой (один-три витка на полюс).

При необходимости такие генераторы можно включать и по схеме с независимым возбуждением. Генераторы с независимым возбуждением используют только при большой мощности, а также при малой мощности, но низком напряжении. В этих машинах независимо от величины напряжения на якоре обмотку возбуждения рассчитывают на стандартное напряжение постоянного тока 110 или 220 В с целью упрощения регулирующей аппаратуры.

Страницы: 1 2 3 4 5