Измерение давления

Страница 2

Рисунок 2.3-Регистрируемые сигналы от волоконно-оптического датчика давления на основе эффекта фотоупругости

Описание усовершенствованного варианта датчика давления на основе эффекта фотоупругости было опубликовано в 1983 году. В этом датчике (рисунок 2.4) вместо лазерного диода использовался светоизлучающий диод и два оптических канала были реализованы так, что зарегистрированную разность/сумму сигнала можно было использовать для компенсации амплитудного шума оптического источника. Принципиальная схема датчика приведена на рисунке 2.4. Подробная схема расположения оптических элементов показана на рисунке 2.5. В датчике излучение, прошедшее по входному оптическому волокну, коллимируется стержне вой градиентной линзой, отражается параллельно поверхности корпуса датчика и линейно поляризуется поляризующим светоделителем. Затем четвертьволновая пластина преобразует луч, придавая ему круговую поляризацию. После этого луч света проходит через активный чувствительный элемент (стеклянную призму), который подвергается напряжению с помощью латунного поршня, используемого для передачи напряжения от Be-Cu-мембраны. Затем полуволновая пластинка используется для поворота осей поляризации оптического луча на π/4, чтобы привести их в соответствие с осями выходного поляризующего светоделителя, встроенного в корпус датчика.

Рисунок 2.4-Датчик давления на основе эффекта фотоупругости с двойным выходом

Две поляризованные компоненты (соответствующие свету, поляризованному под углами ±

π/4 к оси напряжения) вводятся после этого в от дельные оптические волокна с помощью стержневых градиентных линз для передачи в область расположения фотодетекторов. Анализ этой системы оптических элементов (если пренебречь потерями на отражение, коллимацию и выравнивание) показывает, что оптические сигналы, пере даваемые по двум выходным волокнам, описываются уравнением (2.1). Было установлено, что при отсутствии приложенного давления мощность сигналов, передаваемых по двум выходным волокнам, равна 5,3 и 8,9 мВт. Эти величины отличались от базовых значений, равных 4,8 и 4,9 мВт, из-за остаточного напряжения, приложенного к чувствительному элементу, когда затягивалось удерживающее кольцо на Be-Cu-мембране, что бы обеспечить отсутствие утечки масла в корпус датчика. Для зарегистрированных оптических мощностей, измерения анализатором спектра сигналов, зарегистрированных при помощи регистрирующего фотодиода в фоторезисторном режиме с нагрузкой 200 кОм, показали, что оптический дробовой шум является преобладающим источником шума. Измеренные уровни шума составляли —135 и —138 дБ/;; предсказанные значения дробового шума составляли —134 и —137 дБ/соответственно. Измеренные значения уровней шума в сочетании с наблюдаемым изменением интенсивности, вызванным приложенным давлением, определили динамический диапазон каналов равным 123 и 118 дБ, при условии 1 Гц полосы пропускания, при минимальных обнаружимых давлениях, равных 4,8 и 8,3 Па.

Рисунок 2.6-Принципиальная схема датчика давления на основе эффекта фото упругости с двойным выходом

Выходы двух детекторов были объединены с простой электронной схе мой, чтобы обеспечить выход, пропорциональный разности/сумме двух сигналов. Типичная характеристика датчика, в котором используется та кой способ обработки, показана на рисунке 2.8. Однако было обнаружено, что схема обработки увеличивает уровень выходного шума на 30 дБ /, таким образом существенно снижая разрешение и уменьшая динамический диапазон датчика. Это показывает, что схема обработки сигнала после фотодетектора требует тщательной разработки и выбора компонент.

Рисунок 2.7-Подробная схема расположения оптических элементов датчика давления на основе эффекта фотоупругости с двойным выходом

Страницы: 1 2 3 4