Колебательный контур
Цель работы:
исследовать АЧХ и ФЧХ последовательного и параллельного колебательного контура, определить резонансную частоту, найти добротность последовательного контура.
Приборы и материалы:
колебательный контур, осциллограф, источник питания, генератор, провода, магазин сопротивлений, индуктивностей и конденсаторов.
Теоретическая часть
Колебательным контуром называют электрическую цепь, состоящую из элементов, способных запасать электрическую и магнитную энергию, и в которой могут возбуждаться электрические колебания. Эквивалентная схема простейшего колебательного контура состоит из ёмкости, индуктивности и сопротивления.
Колебательные контуры нашли широчайшее применение в радиоэлектронике в качестве различных частотно- избирательных систем, то есть, систем, у которых амплитуда отклика цепи может резко изменится, когда частота внешнего воздействия достигает некоторых значений, определяемых параметрами цепи. Явление резкого возрастания амплитуды отклика называется амплитудным резонансом.
В теории цепей обычно используется другое определение резонанса. Под резонансом понимают такой режим работы электрической цепи, содержащей ёмкости и индуктивности, при котором реактивные составляющие входных сопротивления и проводимости равны нулю, то есть, отсутствует сдвиг фаз между напряжением и током на входе колебательного контура. Такой резонанс называют фазовым. Частоты, соответствующие фазовому и амплитудному резонансам, как правило, близки и в некоторых случаях могут совпадать.
![]() |
График АЧХ для последовательного контура приведён на рис.3. Из графика видно, что графики АЧХ для C и L пересекаются при резонансной частоте w = . Найдём частоты, при которых АЧХ достигает максимума. Они равны
w=
(1)
w=
(2)
- для R,
- для C,
- для L.
рис.3.
Графики ФЧХ выглядят следующим образом
рис.4
- для R
При подаче импульсного напряжения мы получим график затухающих колебаний (рис.5), в аналитическом представлении этот график имеет вид
U(t) = Ue
coswt (3)
где d - коэффициент затухания.
рис.5.
Кроме d у системы есть ещё одна важная характеристика Q – добротность, которую можно найти как отношение Uили U
к U
при резонансной частоте. Через параметры системы выражениe для Q можно записать в виде