Концентрационные структурные образования в тонких слоях магнитной жидкости и дифракция света

Страница 1

Капля магнитной жидкости, помещенная в однородное магнитное поле, изменяет свою форму. Деформация капли обусловлена зависимостью силы на межфазных границах от ориентации магнитного поля [150]. В формировании баланса сил на межфазных границах участвуют силы поверхностного натяжения, а также силы, обусловленные пространственной неоднородностью давления, возникающей вследствие локальных искажений внешнего намагничивающего поля вблизи поверхности капли. Все это делает количественное описание условий равновесия весьма сложным.

В [150] дано объяснение поведения магнитной капли в немагнитной окружающей жидкости, когда давление вне капли постоянно. Если считать форму капли эллиптической, то благодаря однородности магнитного поля давление также постоянно и внутри капли. В этом случае изменение формы капли осуществляется только за счет скачка давления на межфазных границах, для оценки которого получено выражение:

(4.25)

где μi и μa- магнитные проницаемости соприкасающихся сред, Hin и Han - нормальные составляющие напряженностей магнитного поля внутри и вне капли соответственно.

В равновесии имеет место баланс между этим скачком и давлением поверхностного натяжения: P=2δ0R (R - средняя кривизна нормального сечения в рассматриваемой точке поверхности, δ0 - коэффициент поверхностного натяжения). В областях поверхности, нормальных внешнему полю, пониженное давление внутри капли компенсируется нарастанием кривизны поверхности вдоль намагничивающего поля.

В [150] сделана также попытка математически сформулировать задачу о форме капли магнитной жидкости в поле и получено ее решение в следующем виде:

где отношение полуосей эллипсоида,

- функция монотонно убывающая от 1/3 при m= 1, до нуля при m→∞. Расчет равновесной формы капли может быть также осуществлен с помощью энергетического подхода [151]. Равновесное значение отношений осей агрегата определяется из условия минимума полной энергии:

(4.26)

где Ws и Wm- поверхностная и магнитная энергия соответственно. При условии эллипсоидальной формы поверхностная энергия может быть определена в виде:

(4.27)

где е - эксцентриситет. Магнитная энергия в случае слабых полей имеет вид:

(4.28)

где Ро =(μi- μе)/μе, μi и μe - магнитные проницаемости агрегата и окружающей среды соответственно.

Из (4.26) с учетом (4.27) и (4.28) следует, что отношение магнитной энергии к энергии поверхностного натяжения (магнитное число Бонда) связано с m- соотношением:

(4.29)

Следует отметить, что обсуждаемому вопросу посвящено достаточно большое количество как теоретических [108,152-154], так и экспериментальных [155-156] работ, что позволяет утверждать о хорошей изученности этого явления.

Микрокапельные агрегаты, содержащиеся в магнитной жидкости, вследствие повышенной в них концентрации дисперсных частиц, имеют более высокое значение магниной восприимчивости, чем окружающая их слабо концентрированная фаза. Воздействие на них постоянного магнитного поля приводит к деформационным эффектам, теоретическое описание которых аналогично приведенному выше для капель МЖ, помещенных в немагнитную среду. Интерес в этом случае представляют структурные превращения микрокапельных агрегатов в тонких слоях МЖ, приводящие к дифракционным эффектам при пропускании через них света. Экспериментальное исследование дифракции света позволяет изучить особенности упорядочения и трансформации структурной решетки с ростом магнитного поля. При проведении подобных исследований в качестве источника света использовался луч гелий-неонового лазера, сонаправленный с вектором напряженности поля и перпендикулярный плоскости слоя МЖ. Однородное магнитное поле создавалось четырех секционной кубической катушкой, наблюдение структуры осуществлялось с помощью оптического микроскопа (подробная блок-схема установки приведена на рис.26).

Страницы: 1 2 3 4 5 6