Магнитодипольное взаимодействие и эффективные поля в магнитных жидкостях

Страница 1

Очевидно, что использование функции Ланжевена для описания процесса намагничивания магнитных жидкостей возможно, когда процентное содержание дипольных частиц в единице объема мало и их взаимодействием можно пренебречь. По оценкам Евдокимова [123,124 Моя Д.], применение уравнения Ланжевена оправдано, если концентрация частиц имеет порядок 0,1 объемных процентов. Объемная концентрация дисперсной фазы магнитных жидкостей достигает 20 – 25 %, в связи с чем возник вопрос о применимости уравнения Ланжевена для описания процесса их намагничивания. В первых работах [10 -13] расхождение экспериментально полученных кривых намагничивания с кривой Ланжевена объяснялось полидисперсностью системы. Однако, для распространенных в настоящее время высококонцентрированных магнитных жидкостей становится необходимым учет межчастичных взаимодействий. Можно предположить, что для этих целей могут быть использованы разработанные ранее теории для учета дипольного взаимодействия молекул при поляризации жидких диэлектриков. Анализ концентрационной зависимости магнитной восприимчивости магнитных жидкостей в слабых полях позволяет судить о применимости таких теорий для учета магнитодипольного взаимодействия в магнитных жидкостях. Сравнение экспериментально полученной концентрационной зависимости магнитной восприимчивости устойчивых магнитных жидкостей с теоретическими кривыми Клаузиса-Моссоти и Дебая-Онзагера [61М .Д.], а также с линейной зависимостью магнитной восприимчивости от концентрации, следующей из теории Ланжевена, иллюстрируется рисунками 14 и 15.

Рисунок 14. Сравнение экспериментально полученной концентрационной зависимости магнитной восприимчивости МЖ на основе керосина (3) с теоретическими кривыми Клаузиса-Моссотти (1), Дебая-Онзагера (2) и Ланжевена (4) .

На рисунке 14 показана экспериментальная зависимость (кривая 3) магнитной восприимчивости от объемной концентрации дисперсной фазы для всего интервала исследуемых концентраций в сравнении с расчетными кривыми 1 и 2, удовлетворяющими теориям Клаузиса-Моссоти , и Дебая-Онзагера . При расчетах теоретических кривых использовалось значение , определенное как величина, равная угловому коэффициенту начального участка зависимости (принималось, что вклад взаимодействия частиц на этом участке пренебрежимо мал). На рисунке 15 приведены те же кривые, но в области малых концентраций и в увеличенном масштабе.

Рисунок 15. Сравнение экспериментально полученной концентрационной зависимости МЖ (3) с теоретическими кривыми Клаузиса-Моссотти (1) и Дебая-Онзагера (2) в области малых концентраций дисперсной фазы.

Из рисунков 14 и 15 можно заключить, что экспериментально полученная зависимость наиболее близка к кривой Дебая-Онзагера, однако, отличается от всех теоретических кривых более резким изменением хода в области концентраций 5 – 6 %, что позволяет сделать вывод о наличии аномалии в концентрационной зависимости в этой области концентраций. Следует, однако, отметить, что для некоторых исследованных образцов указанной аномалии не наблюдалось, а в работах [] она и вовсе обнаружена не была. Из этих же работ следует, что экспериментальная кривая хоть и близка к теоретической кривой Дебая-Онзагера, но лежит ниже, а не выше ее, как это показано на рисунках 14 и 15. Вместе с тем, о полном согласии экспериментальных результатов с указанными теоретическими зависимостями ни в одной работе не сообщалось.

Страницы: 1 2 3 4 5 6