Магнитодипольное взаимодействие и эффективные поля в магнитных жидкостях
(8)
Приравняем полученное выражение для работе
пондеромоторных сил, взятой с обратным знаком, т.е.
. С учетом этого, нетрудно получить:
.
Используя соотношения векторного анализа
(9)
С учетом того, что , получим:
(10)
В работе [2] для плотности сил в дипольном приближении найдено следующее выражение:
(11)
Приравнивая (10) и (11), с учетом отсутствия в МЖ пространственной дисперсии и токов проводимости, получим:
(12)
Из формулы (12) видно, что величина эффективного поля связана с магнитной восприимчивостью и ее производной по температуре и может быть рассчитана при использовании зависимости магнитной восприимчивости от температуры. По-видимому, впервые (12) было приведено в работе [7] без вывода.
Условие согласуемости (12) с формулой Лоренц-Лоренца для эффективного поля
имеет вид:
(13)
Соотношение (13) может быть использовано для оценки в случае применимости формулы Лоренц-Лоренца.
Проверим справедливость полученной формулы (12) для некоторых известных функциональных форм зависимости магнитной восприимчивости от температуры.
В случае парамагнитной жидкости для температурной зависимости магнитной восприимчивости справедлив закон Кюри:
и
(14)
Подставив эти выражения в формулу (12), получим: , что и следовало ожидать для системы с невзаимодействующими частицами.
Для парамагнитной жидкости, с магнитной восприимчивостью, подчиняющейся закону Кюри-Вейсса,
;
, (15)
где - температура Кюри. Формула (12) в этом случае дает:
(16)
Приравняв (16) к выражению для эффективного поля записанного в виде и учитывая, что
, получим:
(17)
Последнее соотношение, с учетом выражения (15) для дает
, что, как известно, следует также непосредственно из закона Кюри-Вейсса. Проведенный анализ позволяет предположить возможность применения формулы (12) для расчета эффективных полей и при других формах зависимости
, в том случае, когда выполняется поставленное при ее выводе требование однородности среды.