Металлы, полупроводники, диэлектрики. Понятие о сверхпроводимости

Страница 1

Представление об энергетических зонах позволяет объяснить с единой точки зрения зонной теории существование металлов, полупроводников и диэлектриков.

Підпис:

Валентной зоной называется разрешенная зона, возникшая из того уровня, на котором находятся валентные электроны изолированного кристаллобразующего атома. При нулевой температуре валентные электроны занимают попарно нижние уровни валентной зоны (в соответствии с принципом Паули), а более высоко лежащие разрешенные зоны будут свободны от электронов. В зависимости от степени заполнения валентной зоны и размера запрещенной зоны (ее ширины) возможны различные варианты.

1. Электроны заполняют валентную зону частично. Так как энергетическое расстояние между ними очень мало – порядка 10–23 эВ, то сообщение даже малой энергии может перевести электроны на более высокие энергетические уровни.

Энергии, сообщаемой электрическим полем, также оказывается достаточно для перехода электронов на свободные более высокие уровни. Это означает, что электроны могут ускоряться электрическим полем и приобретать дополнительную энергию в пределах разрешенной зоны. Вещество с подобной схемой энергетических зон представляет собой металл. В случае металла валентная зона является по сути дела зоной проводимости, так как в ней происходит движение электронов, формирующих проводимость вещества.

(Частичное заполнение валентной зоны может быть достигнуто двумя способами: 1) при ее формировании из последнего энергетического уровня атома, занятого одним (а не двумя) электронами, и 2) при перекрывании двух наиболее высоколежащих разрешенных зон – заполненной и свободной от электронов).

В случае идеальной кристаллической решетки электроны проводимости не испытывали бы при своем движении никакого сопротивления, и электропроводность металлов была бы бесконечно большой.

Реальная кристаллическая решетка всегда содержит нарушения периодичности, связанные с наличием инородных – примесных атомов или вакансий (отсутствие атома в узле), а также с тепловыми колебаниями решетки.

Удельное электросопротивление металла может быть представлено в виде ρ = ρтк + ρпр, где ρтк – сопротивление, обусловленное тепловыми колебаниями ионов кристаллической решетки, ρпр – сопротивление, обусловленное примесными атомами. Слагаемое ρтк уменьшается с понижением температуры и обращается в нуль при Т = 0. Именно это слагаемое обуславливает экспериментально наблюдаемую зависимость ρ ~ T, наблюдаемую для металлов. Слагаемое ρпр при небольшой концентрации примесей не зависит от температуры и образует остаточное сопротивление металла (при 0 К).

2. Если уровни валентной зоны полностью заполнены электронами – зона заполнена, то для увеличения энергии электрона ему нужно сообщить дополнительное ее количество, превышающее ширину запрещенной зоны ΔE. Электрическое поле не может сообщить электрону такую энергию: eE << kT.

Если ширина запрещенной зоны не слишком велика (порядка 0,1…1 эВ), то энергии теплового движения хватит для переброса наиболее быстрых электронов в верхнюю свободную зону. В этой частично заполненной зоне – зоне проводимости электроны будут находиться в тех же условиях, что и валентные электроны в металлах – электрическое поле будет ускорять их, вовлекая в процессы проводимости. Такие вещества называются полупроводниками.

Число электронов, перешедших в зону проводимости (а также число образовавшихся дырок) пропорционально вероятности заполнения электронами энергетических уровней – функции Ферми-Дирака, поэтому электропроводность полупроводников чрезвычайно быстро (экспоненциально) растет с температурой

.

3. В случае, если ширина запрещенной зоны слишком велика (порядка нескольких эВ), тепловое движение (даже при высоких температурах) не может обеспечить перевод в свободную зону заметного числа электронов. При этом проводимость очень низка; вещества такого типа относятся к диэлектрикам.

Страницы: 1 2