О возможности создания биокомпьютера на генетических структурах

Страница 3

) использовала для создания человека. Мысль вполне реалистичная, если учесть теоретические работы по коллективной симметрии генетического кода, проводимые школой Эйгена в Институте Макса Планка. Ее исследования показывают, что ключевая часть информации, записанная и записываемая как квазиречь в хромосомах всех организмов нашей планеты, носит искусственный характер. Наши данные о том, что хромосомный континуум и ДНК любой биосистемы является неким подобием антенны, открытой во вне для приема дополнительной (возможно, экзобиологической) информации, подтверждают сказанное. Можно думать, что геном организмов Земли, по крайней мере частично, является полигоном для смысловых экзобиологических влияний, и в этом плане существенно, что мы нашли первичные подходы к вхождению в этот семиотико-семантический ареал.

Основываясь на сказанном, можно предсказать, что открываются следующие перспективы знаковых манипуляций с геноструктурами как основным субстратом биокомпьютеров:

1. Создание искусственной памяти на генетических молекулах, обладающей поистине фантастическим объемом и быстродействием.

2. Создание биокомпьютера на ДНК, основанного на совершенно новых принципах и сравнимого по способам обработки информации и функциональным возможностям с человеческим мозгом.

3. Осуществление дистантного управления ключевыми информационными процессами в биосистемах через искусственные биокомпьютеры (лечение рака, СПИДа, генетических уродств, управление социогенетическими процессами и, в конечном итоге, изменение времени жизни).

4. Активно защищаться от деструктивных волновых влияний через обнаруженный информационно-энергетический канал.

5. Устанавливать экзобиологические контакты.

Подводя итог, спросим : что остается от логики постановочных экспериментов с ДНК, которую предлагают Адлеман и другие исследователи в области молекулярной электроники информационных биомакромолекул? Эта логика уязвима, поскольку основана на упрощенных представлениях о работе хромосом как чисто вещественного субстрата. Волновые функции геноструктур не берутся в расчет. Это тупик, который оборачивается все более нарастающим огромным финансированием по гено-биотехнологиям, по нейрокомпьютерам со все меньшим практическим выходом. Те же пороки ожидают и молекулярную электронику в ее попытках использовать одномерное мышление относительно ДНК при создании биокомпьютера.

Такой компьютер должен имитировать функции генома в части оперирования волновой информацией - то есть создавать образы, в том числе и квази-речевые, распознавать их, манипулировать ими как командными. Такие знаковые структуры будут обладать огромной биологической активностью. Даже сейчас лазер на ДНК, “заряженный” определенными текстами, например, геном продолжительности жизни, вероятно, мог бы продлить ее у человека на 300 - 400 и более лет. Необходимо перераспределение финансирования в генетике, эмбриологии и генной инженерии, а также в молекулярной электронике. Это позволит сделать прорыв в создании компьютеров с квази-генетической памятью, объем которой превосходит все мыслимые пределы, и способных управлять суперсложными процессами, реально сравнимыми с метаболизмом и мышлением. Такие биокомпьютеры будут способны контролировать и поддерживать нормальную жизнедеятельность человека во временных масштабах, приближающихся к бессмертию.

Страницы: 1 2 3