Особенности электронных пускорегулирующих аппаратов для разрядных ламп высокого давления

Страница 3

Имеются сообщения о повышении энергоэкономичности ламп при использовании тока определенной формы, например в ЭПРА (заявка 4439812 ФРГ, НО5В 41/36, опубл. 9.05.1996; заявка 4439885 ФРГ, НО5В 41/29, опубл. 8.11.1996) для питания ГРЛ предлагается использовать ток прямоугольной формы с регулируемой амплитудой, при этом лампа подключается к источнику постоянного тока и ПРА сдержит повышающий преобразователь постоянного напряжения - в постоянное, а также мостовой коммутатор и блок управления. Прямоугольная форма тока и напряжения обеспечивает работу лампы без токовых пауз и, одновременно реализует преимущества работы на постоянном токе и устраняет недостатки, связанные с катафорезом.

5. Система управления вырабатывает управляющие сигналы для ВЧ инвертора. Рабочая частота схемы выбирается в пределах «окон», свободных от акустических резонансов. Кроме того, на выбор рабочего диапазона частот накладывает ограничения элементная база ВЧ инвертора (транзисторы, диоды) и материал магнитного сердечника балластного дросселя. Эти ограничения не позволяют, при использовании для магнитопроводов ферритов широкого применения, поднять рабочую частоту выше 50 ÷ 60 кГц. Реализовать обратные связи, ограничивающие мощность лампы на допустимом уровне, можно следующими путями: частотной модуляцией; широтно-импульсной модуляцией; регулированием напряжения питания инвертора. В случае использования частотной модуляции увеличение мощности лампы приводит к увеличению рабочей частоты ЭПРА, росту сопротивления индуктивного балласта и снижению мощности до заданного уровня. Достоинством широтно-импульсной модуляции является постоянство рабочей частоты ЭПРА, что облегчает ее выбор в пределах свободных от акустических резонансов частотных «окон», но, одновременно, усложняет систему управления инвертором. Регулирование напряжения питания инвертора можно осуществить улучшить введением в схему активной коррекции формы потребляемого тока путем дополнительной цепи обратной связи, но для обеспечения широкого диапазона регулирования элементы схемы ЭПРА должны работать при повышенных напряжениях (400 ÷ 450 В). Схема системы управления может предусматривать возможность регулирования светового потока лампы. Перспективным представляется и использование для всех перечисленных целей микроконтроллеров, что позволит управлять лампой по более сложным алгоритмам, учитывающих все многообразие реальных эксплуатационных условий. В отдельную группу можно выделить ЭПРА, построенные по принципу совмещения в одном узле функций инвертора, создающего ВЧ напряжение питания лампы, и функции активной коррекции формы потребляемого из сети тока, такие аппараты применяют для ламп небольшой мощности.

Имеется устойчивая тенденция электронизации освещения на основе микропроцессорных ЭПРА, так как они имеют явные преимущества по сравнению с электромагнитными ПРА (ЭМПРА), в частности: экономичность, миниатюрность, универсальность, возможность плавного регулирования светового потока от 1 ÷ 100% с помощью цифровых технологий. Подобные ЭПРА имеют возможность автоматически «распознавать» подключенную к нему лампу и обеспечивать оптимальные электрические характеристики в пусковом и рабочем режимах. ЭПРА допускает более 1 млн включений ламп без ущерба для их срока службы, причем последний увеличивается в несколько раз по сравнению со стартерно-дроссельными схемами. По данным фирмы Osram, применение высокоэффективных ЭПРА, вместо обычных электромагнитных аппаратов, позволяет получить экономию электроэнергии на уровне 25÷30%, а срок службы увеличить примерно на 50%.

Конструкции ЭПРА могут быть, по крайней мере, трех типов: низкочастотные, высокочастотные и гибридные (т.е. комбинации ЭПРА и ЭМПРА). Для высокой эффективности ПРА обязательными элементами являются различные виды инверторов для повышения частоты питающего тока и электронные блоки управления на базе микроконтроллеров, а также другая электроника, обеспечивающая регулирование, контроль, адаптацию и коррекцию коэффициента мощности. Управление транзисторами инвертора может осуществляться драйверами на интегральных микросхемах. При этом драйверы обеспечивают ждущее зажигание ламп (путем изменения частоты), регулирование и стабилизацию их мощности, а также ограничение тока ламп. Причем предусматриваются дополнительные микросхемы, которые исключают возможность сбоя работы драйвера (а, следовательно, и мигания ламп) при кратковременных снижениях мощности, связанных с провалами сетевого напряжения. Подобные ЭПРА позволяют реализовать сенсорные модуль-коммутаторы, в которых совмещены ИК-датчики движения (присутствия) и светочувствительные элементы, реагирующие на уровень естественного освещения. Такие интерактивные светорегулирующие системы могут сопрягаться с микропроцессорным управлением через компьютерные программы.

Страницы: 1 2 3 4