Плазменное упрочнение в сочетании с другими способами воздействия на металлы

Страница 3

стлали 45 на микротвердость упрочненного слоя после плазменной закалки. Повышение микротвердости связано с наследованием аустенитом дислокационной структуры деформирования α

- фазы. Электронно-микроскопичесикй анализ показал, что в упрочненном слое размеры игл мартенсита сильно уменьшены, по сравнению с простой плазменной закалкой. С увеличением степени деформации вели­чина относительного измельчения возрастает.

Рис. 2.51. Влияние предварительной пластической деформации

на миктотвердость упрочненного слоя на стали 45 (плазменное упрочнение без оплавления) 1- 20% деформации; 2- 50% деформации; 3- 85% деформации

Многообразие возможных вариантов комбинированного воздействия (термического и деформационного) на структуру, позволяет формировать в широких пределах окончательные свойства детали. При разработке технологических вариантов основные параметры (температура нагрева, скорость нагрева, степень де формации) должны выбираться из расчета достижения максимального эффекта измельчения зерна аустенита. Усложнение технологии упрочнения компенсируется высоким механическими свойствами обработанных деталей. На практике возможно осуществить следующие варианты:

- холодная пластическая деформация + отжиг + плазменная закалка + отпуск:

- плазменная закалка + деформация (в интервале температур Аr3 и Аr1) +отпуск,

- плазменная закалка + отпуск + деформация;

- объемная обработка + отпуск + холодная пластическая деформация + от­жиг + плазменное упрочнение.

Эффективность применения плазменного поверхностного упрочнения с целью повышения износостойкости изделий во многом зависит от соотношения глу­бины упрочненной зоны Z к допустимой величине износа h. Для большинства изделий глубина упрочнения во много раз меньше, чем износ. Поэтому плазменное поверхностное упрочнение целесообразно использовать в комплексе с операцией наплавки. Применение комплексной технологии упрочнения ( наплавка + плазменное упрочнение) позволяет в очень больших пределах регулировать не только глу­бину, но и структуру наплавленного металла. Основные подходы к выбору наплавленного металла сформулированы в работе [9].

Первый подход состоит в использовании низко- или среднеуглеродистых низколегированных сталей (применяемых для восстановления геометрических раз­меров детали) типа 18ХГС, З0ХГСА и т.д.

Второй подход - использование низко- или среднеуглеродистых среднелегированных сталей мартенситного или мартенситно-карбидного класса типа 10Х5МТ, ЗОХ2М2ЕФ и т.д.

Выбор этих сталей определяется экономным легированием, обеспечивающим износостойкость при нормальной и повышенной температуре, теплостойкость, ударную вязкость и т.д. [9].

Металл, наплавленный проволокой Св-З0ХГСА под флюсами АН-60, АН-348А, ОСЦ45, АН-26 и др. в исходном состоянии имеет невысокую микротвер­дость – 1950-2800 Мпа. Последующая операция упрочнения повышает значение микротвердости до 5000-7100 МПа, Наплавка стали 3 проволокой Св-08Г2С,

Св-10ГА, Св- 18ХГСА, Св-18ХМА в среде углекислого газа не позволяет получить вы­сокую твердость наплавленного слоя. Последующая операция плазменного упроч­нения увеличивает микротвердость до 5000-8000 МПа. При наплавке порошковой проволокой ПП-АН-124, наплавленный металл имеет микротвердость порядка 6000-7500 МПа, после плазменного упрочнения микротвердость наплавленного ме­талла возрастает до 7700-8900 Мпа.

Страницы: 1 2 3 4 5