Поверхностные волны

Страница 1

Теперь о поверхностных волнах, о собственно морском волнении. Пожалуй, в море нет другого явления, которое так широко известно. От древних мореплавателей и философов до художников и поэтов современности, от старого деда, всю жизнь проведшего на берегу, до юного мальчика, впервые вступившего на морскую гальку, нет никого, кто оставался бы равнодушным к могучей и переменчивой красоте морских волн (Приложение 12, Приложение 13).

И тем не менее до сегодняшнего дня, несмотря на усилия многих ученых во всем мире, еще нет надежного способа количественно описать движение реальной морской поверхности. Ничтожно мало (меньше десяти) и число натурных опытов, где был бы зафиксирован с достаточной подробностью рельеф морской поверхности на площади протяженностью хотя бы в несколько сотен метров. Всем, кто соприкасается с этими вопросами, известны технические трудности таких экспериментов и сложности создания теории, учитывающей все многообразие геофизических факторов, влияющих на форму и движение морской поверхности.

Морское волнение является случайным процессом в том смысле, что каждая его реализация в деталях практически неповторима. Однако существуют некоторые общие закономерности волнения, и его связь с гидрометеоусловиями может быть описана статистическими методами. Как всякий случайный процесс, он может быть представлен как суперпозиция бесконечно большого числа гармонических составляющих со случайными амплитудами и фазами. Для описания волнения обычно используют энергетический спектр этих составляющих (Приложение 14).

Основная энергия волн сосредоточена в максимуме на частотах в доли герца, это примерно соответствует волнам, отмечаемым глазом человека на поверхности моря. Уровень и положение этого максимума на шкале частот зависят от скорости ветра: он тем выше и тем больше сдвинут в сторону низких частот, чем сильнее ветер. Волнение инерционно, и при любом изменении ветра лишь через некоторое время устанавливается динамическое равновесие между энергией, передаваемой от ветра к волнам, и затуханием энергии волн из-за их разрушения, внутреннего трения и передачи кинетической энергии в глубинные слои воды.

Интересно отметить, что частицы воды при волнении движутся совсем не так, как сама поверхность. Они не качаются, как щепка, плавающая на поверхности, и не бегут вместе с гребнями волн. Каждая частица воды вблизи взволнованной поверхности движется по замкнутой вертикальной орбите, имеющей форму, близкую к окружности, с радиусом, равным полувысоте волны (Приложение 15). Центр орбиты находится на горизонте, соответствующем положению равновесия в отсутствии волн. Амплитуда волнового движения и соответственно радиусы орбит частиц воды убывают с глубиной экспоненциально и тем быстрее, чем короче волна. На глубине, равной половине длины волны, амплитуда волнового движения убывает примерно в 23 раза, а на глубине, равной длине волны на поверхности, - более чем в 500 раз.

Совокупное действие всех перечисленных выше динамических водных процессов- синоптические вихри, течения, внутренние и поверхностные волны - порождает в толще вод турбулентное движение, флуктуации температуры и плотности. Величины вариаций характеристик воды невелики, но достаточны, чтобы оказать заметное влияние на скорость звука. Обусловленные этими вариациями пространственные и временные флуктуации скорости звука имеют случайный характер и особенно интенсивны в верхних слоях, включая перемешанный слой и слой верхнего термоклина.

Совсем недавно было обнаружено, что в океане существуют ярко выраженные неоднородности, сильно вытянутые в горизонтальном направлении. Эти образования имеют толщину в единицы и десятки метров и простирание в несколько километров по горизонтали. В сущности, океан представляет собой тонко прослоенный пирог. Современные чувствительные зонды, позволяющие детально изучить зависимость температуры, солености и скорости течения от глубины, показывают, что эти характеристики практически постоянны в пределах слоев и изменяются почти скачком при пересечении их границ. Соответствующую изрезанность приобретает и профиль скорости звука.

Естественно, что случайные нерегулярности скорости звука в толще воды и волнение ее поверхности оказывают значительное влияние на условия распространения звука в воде. Когда акустическая волна проходит через случайно неоднородную толщу океанских вод или отражается от взволнованной поверхности океана, часть звуковой энергии рассеивается в других направлениях.

Страницы: 1 2 3