Регулирование частоты вращения синхронных двигателей

Страница 3

Напряжение, подаваемое к якорю вентильного двигателя от преобразователя частоты, является, так же как и при частотном регулировании асинхронного двигателя, несинусоидальным. Поэтому, чтобы уменьшить вредные воздействия высших гармоник напряжения, тока и потока, двигатель необходимо снабдить мощной демпферной обмоткой с малыми активным и индуктивным сопротивлениями (см. 1.17). В этом случае высшие гармоники оказывают на синхронный двигатель сравнительно небольшое воздействие. При наличии такой обмотки режимы работы вентильного двигателя можно рассматривать с учетом только первых гармоник тока и напряжения.

Режим работы вентильного двигателя зависит не только от величины тока возбуждения и соотношения между напряжением и частотой, как в обычном синхронном двигателе, регулируемом путем изменения частоты. Большое значение имеют также момент подачи напряжения на фазу двигателя и свойства преобразователя частоты.

В преобразователе частоты, основанном на использовании инвертора напряжения (рис. 1.51, а), величина выходного напряжения почти не зависит от режима работы двигателя. Поэтому регулирование необходимо вести при постоянстве угла θ (см. рис. 1.50, а). Последнее можно осуществить, определяя с помощью какого-либо датчика положение оси полюсов ротора (а следовательно, и направление вектора Ė0) и регулируя подачу управляющих импульсов на тиристоры преобразователя так, чтобы напряжение Ùп подавалось на соответствующие фазы двигателя с некоторым углом опережения β0 ≈ θ (угол регулирования) по отношению к положению вектора Ė0 для данной фазы. Можно также определять ось результирующего магнитного потока и подавать питание на соответствующую фазу с требуемым углом β0. Оба эти метода имеют свои преимущества и недостатки, обусловленные в основном особенностями применяемых датчиков и управляющих устройств.

В рассматриваемой схеме питания вентильного двигателя угол регулирования β0 практически полностью определяет угол θ. Если приближенно положить β0 ≈ θ, то при постоянных значениях частоты питающего напряжения и тока возбуждения (т.е. ω1 и э. д. с. Е0) формула (1.35) принимает вид

. (1.51)

Следовательно, при изменении угла регулирования β0 ≈ θ для поддержания неизменным момента М нужно регулировать величину подводимого к двигателю от преобразователя напряжения Uп.

На рис. 1.50, б показано несколько положений векторов Ùп,

Iа и – jİaxсн при Е0 = const и различных значениях угла опережения β0 ≈ θ преобразователя частоты. При угле опережения β01 ≈ θ1 векторы Ùп1, İа1 и – jIalxсн направлены так, что ток İа1 совпадает по фазе с напряжением Ùп1 и является минимальным; при уменьшении угла β0 до β02 = θ2 напряжение, подводимое к двигателю, необходимо увеличить до Uп2; при этом ток İа2 будет отставать от Ùп2 на угол φ2; при увеличении угла β0 до β03 = θ3 необходимо уменьшать напряжение, подводимое к двигателю до Uп3, при этом ток İа3 будет опережать Ùп3 на угол φ3. Так как величина Uпsinθ на векторной диаграмме (рис. 1.50, б) выражается отрезком АВ, то при изменении угла опережения конец вектора напряжения – Ùп перемещается по прямой ВАС, проходящей через точку А и параллельной вектору Ė0. Ток якоря Iа при таком регулировании может существенно увеличиться, а максимальный момент двигателя в режиме, когда ток İа отстает от напряжения Ùп преобразователя (например, в положениях İа2 и Ùп2), уменьшится.

Страницы: 1 2 3 4 5