Синхронный двигатель

Страница 1

Как было показано ранее, синхронная машина, работающая параллельно с сетью, автоматически переходит в двигательный режим, если к валу ротора приложен тормозной момент. При этом машина начинает потреблять из сети активную мощность и возникает электромагнитный вращающий момент. Частота вращения ротора остается неизменной, жестко связанной с частотой сети соотношением n2, = n1 = 60f1/p, что является важнейшим эксплуатационным свойством синхронных двигателей.

Векторные диаграммы.

По основным комплексным уравнениям синхронной машины (1.19в) и (1.23б) могут быть построены векторные диаграммы. Однако для синхронного двигателя в указанные уравнения вместо величины Ù надо подставить – Ùс, так как не принято говорить о «напряжении двигателя»; при этом для не-явнополюсной и явнополюсной машин будем иметь:

. (1.43)

Построение векторных диаграмм (рис. 1.45, а, б) по формулам системы (1.43) рекомендуется начинать с изображения векторов Ùс и – Ùс. Далее строится вектор тока İа, активная составляющая которого совпадает с направлением вектора Ùc, и определяют вектор Ė0. При построении диаграммы для явнополюсной машины (рис. 1.45, б) нужно так же, как это делалось в диаграмме для генератора (см. рис. 1.25, в), вначале определить направление вектора Ė0, прибавив к – Ùc вспомогательный вектор

Рис. 1.45 – Упрощенные векторные диаграммы синхронного неявнополюсного (а) и явнополюсного (б) двигателя

Для выяснения свойств синхронного двигателя рассмотрим его работу при изменении нагрузочного момента Мвн и постоянном токе возбуждения; при этом для простоты будем пользоваться векторной диаграммой неявнополюсной машины. Допустим, что двигатель работает при cosφ = l, чему на векторной диаграмме (рис. 1.46, а) соответствуют ток İа1 и угол θ1. С повышением нагрузки увеличивается угол между векторами Ė0 и – Ùс до какого-то значения θ2, так как согласно (1.35а) вращающий момент М = Мвн пропорционален sinθ. При этом конец вектора Ė0 перемещается по окружности с радиусом, равным Е0, и при принятых условиях (Iв = const; E0 = const и Uc = const) вектор тока İа2 также поворачивается вокруг точки 0, располагаясь перпендикулярно вектору – jİа2xсн Из диаграммы видно, что в рассматриваемом случае ток двигателя İа2 будет иметь отстающую реактивную составляющую.

Если нагрузка двигателя снизится по сравнению с исходной, то угол θ уменьшится до значения θ3. При этом ток двигателя İа3 будет иметь опережающую реактивную составляющую.

Следовательно, изменение активной мощности синхронного двигателя приводит к изменению его cosφ: при уменьшении нагрузки вектор тока поворачивается в сторону опережения и двигатель может работать с cosφ = 1 или с опережающим током; при увеличении нагрузки вектор тока поворачивается в сторону отставания.

Рис. 1.46 – Упрощенные векторные диаграммы синхронного двигателя:

а – при изменении нагрузочного момента на валу; б – при изменении э. д. с. Е0 путем регулирования тока возбуждения

Если при неизменной активной мощности менять ток возбуждения, то будет меняться только реактивная мощность, т.е. величина cosφ. Векторная диаграмма для этого случая изображена на рис. 1.46, б. Если двигатель работает при cosφ = l, то этому режиму соответствует э.д.с. Ė01 и некоторый угол θ1. При уменьшении тока возбуждения э.д.с. Ė0 снижается до Ė02. Поскольку активная мощность остается неизменной, из условия Р = Рэм = mUc (E0/xсн) sinθ = const получим, что Е01 sin θ1 = Е02 sinθ2 Отсюда следует, что конец вектора Ė0 при изменении тока возбуждения будет перемещаться по прямой ВС, параллельной вектору Ùc и проходящей через конец вектора Ė01 Из векторной диаграммы (рис. 1.46, б) видно, что угол θ2 будет больше θ1.

Аналогично строится диаграмма при увеличении тока возбуждения. В этом случае э д с Ė0 возрастает до величины Ė03 и угол θ3 становится меньшим θ1. Вектор – jİа3xсн поворачивается вокруг точки А и соответственно ему изменяет направление вектор тока İa3, перпендикулярный вектору – jİa3xсн

При этом из условия равенства активных мощностей имеем: Ia1 cosφ1 = Iа2 cosφ2 = Ia3 cosφ3, конец вектора тока İа перемещается по прямой DE, перпендикулярной вектору Ùc По диаграмме, приведенной на рис 1.46, б, можно построить U-образные характеристики для двигателя Iа = f(Iв), которые будут иметь такую же форму, как и характеристики для генератора (см рис 1.40), с той лишь разницей, что для двигателя угол сдвига фаз φ принято отсчитывать от вектора напряжения сети Ùc Поэтому при недовоз-буждении ток İа будет отставать от напряжения сети Ùc, т.е. двигатель будет потреблять из сети реактивную мощность Q, а при перевозбуждении ток будет опережать напряжение сети Ùc, т.е. двигатель будет отдавать в сеть реактивную мощность

Страницы: 1 2