Способы получение характеристического уравнения
Классический метод
Классический метод основан на решении ЛДУ методом вариации произвольных постоянных. Любая система ЛДУ может быть сведена к одному уравнению n –ого порядка. В цепях по схеме после коммутации порядок определяется так: n = n L + n C – nОК – nОС , где n L – число L; n C – число C; nОК – число особых контуров, т.е. таких, которые состоят только из емкостей и источников ЭДС; nОС – число особых сечений (в простейшем случае, это узлы схемы, к которым подключены только ветви с источником тока или с индуктивностями).
Решение уравнения представляют в виде суммы частного решения неоднородного уравнения (ЛНДУ) и общего решения линейного однородного дифференциального уравнения (ЛОДУ). Частное решение определяется видом правой части уравнения. В цепях в правой части уравнения стоят источники энергии схемы после коммутации. Физический смысл частного решения уравнения в цепях – это новый установившийся режим, к которому будет стремиться схема после коммутации под действием источников. Поэтому частное решение ЛНДУ называют принужденной составляющей режима. Общее решение ЛОДУ физического смысла не имеет. В противоположность принужденной составляющей, его называют свободной составляющей переходного процесса. Свободная составляющая записывается в виде суммы слагаемых, число и вид которых определяются корнями характеристического уравнения.
После записи решения необходимо рассчитать произвольные постоянные, вошедшие в выражение общего решения. Это можно сделать, если известны начальные условия. Начальные условия – это значения искомой функции времени и необходимого числа её производных по времени в начале переходного процесса, т.е. при t=0.
Все начальные условия делят на две группы:
- независимые начальные условия, это L(0) и uC(0), которые находятся по законам коммутации, с помощью вычисленных ранее L(0-) и uC(0-) в схеме до коммутации;
- все остальные начальные условия – зависимые. Их приходится искать из цепи после коммутации в переходном режиме по законам Кирхгофа для мгновенных значений токов и напряжений при t=0 с помощью независимых начальных условий. Имея необходимое число начальных условий и рассматривая решение и его производные по времени в момент , получают систему линейных алгебраических уравнений (СЛАУ) из которой находят произвольные постоянные.
В соответствии с изложенным, порядок расчета переходного процесса классическим методом может быть таким:
1) рассматривают установившийся режим схемы до коммутации и находят L(0-) и uC (0-);
2) рассматривают цепь после коммутации в новом установившемся режиме и находят принужденную составляющую переходного процесса;
3) тем или иным способом получают характеристическое уравнение и находят его корни в соответствии с которыми определяют вид свободной составляющей;
4) записывают решение в виде суммы принужденной и свободной составляющих.Если характеристическое уравнение n – ого порядка, то формируется система линейных алгебраических уравнений (СЛАУ) n - ого порядка, включающая (n-1) производную решения. Переписывают СЛАУ для ;
5) рассматривают цепь после коммутации в переходном режиме; рассчитывают необходимые начальные условия (ННУ);
6) подставляют ННУ в СЛАУ при и находят произвольные постоянные;
7) записывают полученное решение.
Способы получения характеристического уравнения
Существуют различные способы получения характеристического уравнения.
Если цепь описывается всего одним уравнением, то его алгебраизируют: d/dt заменяют на p, dt заменяют на 1/p, правую часть обращают в ноль и получают характеристическое уравнение.