Запись ик-лазерного сигнала на уровне нелинейной динамики днк

Общая посылка данной части работы заключается в том, что хромосомный аппарат и его главная часть ДНК генерируют знаковые волновые структуры. Вместе с тем, геном способен на основе такого рода волновой памяти распознавать и корректировать пространственно-временную структуру биосистемы. Необходим простой и однозначный экспериментальный результат, который показал бы, что молекулы ДНК в принципе способны к памяти на внешнее электромагнитное поле. В качестве такового был выбран ИК-лазерный сигнал с учетом того, что ДНК in vivo оперирует таким излучением. Мы поставили несколько серий экспериментов для того, чтобы ввести in vitro такой искусственный лазерный сигнал в гель молекул ДНК с последующим анализом их нелинейной динамики как системы отображения ИК-лазерного воздействия на уровне явления возврата Ферми-Паста-Улама (ФПУ) [25]. Для введения такого рода сигнала в нелинейно-динамический континуум геля ДНК мы использовали импульсный режим работы ИК-лазера Ga-As с длиной волны 890 нм, частотой повторения импульсов 600 Гц со средней мощностью (минимум 0,8; максимум 3,1) Вт с временем однократной экспозиции 4 сек. Регистрацию воздействий лазера и подготовку образцов ДНК из эритроцитов кур вели в соответствии с [25], в частности, с использованием метода корреляционной лазерной спектроскопии. Анализ поведения временных автокорреляционных функций (АКФ) светорассеяния ДНК показал, что сигнал ИК-лазера запоминается биополимером в форме периодической стохастизации АКФ и носит долговременный и устойчивый характер. Периодические повторы стохастических АКФ допустимо трактовать как одну из форм явления возврата Ферми-Паста-Улама, сочетанного со свойственной этому явлению памятью. Замораживание ДНК геля в течение недели не влияет на приобретенную память на ИК-лазерный сигнал. После размораживания периодическая стохастизация АКФ данного препарата сохраняется, если поддерживать препарат в высокополимерной форме. Таким образом, удалось впервые осуществить запись внешнего искусственного импульсного ИК-лазерного воздействия на уровне нелинейной динамики ДНК, что может служить простейшей реалистической моделью эпигеноволновых процессов in vivo.