Движения маятника с различными механизмами затухания
Периодическое затухание. Оно осуществляется при слабых силах трения:
, (1.41)
когда величина (1.39) действительна. В этом случае решение (1.40) выражается формулой (в действительной форме)
, (1.42)
Графически это колебание представлено на рисунке (см. приложение 2) и является колебанием с постоянной частотой (1.39), но убывающей с течением времени амплитудой. В этом смысле это не только не гармоническое, но даже и не периодическое колебание, поскольку колебания не повторяются в том же виде. Тем не менее, удобно говорить о периоде этих колебаний, понимая под этим промежуток времени
, (1.43)
Говоря «амплитуда затухающих колебаний» понимают величину
, (1.44)
которая есть максимальное смещение частицы относительно положения равновесия во время колебаний. Из выражения (1.44) следует, что за время
, (1.45) амплитуда убывает в
раз. Этот промежуток времени называется временем затухания, а
– декрементом затухания.
Наиболее объективной характеристикой затухания колебаний является логарифмический декремент, который является отношением периода колебаний (1.43) к времени затухания (1.45)
, (1.46)
Легко заметить, что логарифмический декремент равен натуральному логарифму отношения двух последующих амплитуд:
, (1.47)