Энергетическая щель

Страница 1

Металл представляет собой систему колеблющихся положительно заряженных ионов, образующих кристаллическую решетку, и систему относительно свободных, как говорят, "коллективизированных" электронов. Поскольку электроны имеют собственный механический момент (спин), равный 1/2, по принципу Паули в каждом квантовом состоянии могут находиться только два электрона с противоположно направленными спинами. А так как концентрация n коллективизированных электронов в металлах велика (n ~ 1023 — 1024 см−3), верхним заполненным энергетическим состояниям соответствует очень большая кинетическая энергия еF = mVF2/2≈ (1 — 10) эB. Энергетический спектр электронов, то есть схема расположения уровней энергии, которые могут занимать электроны, квазинепрерывен (уровни расположены очень близко один к другому, рис. 4а). В некотором смысле, электроны ведут себя, как жидкость, заполняющая сосуд: чем больше жидкости, тем выше ее уровень. Поэтому электроны в металле хаотически движутся не со скоростями, определяемыми энергией теплового движения kТ, а с "космическими" скоростями VF ~ 108 см/с, соответствующими энергии еF. Между электронами действуют силы кулоновского отталкивания, которые частично экранируются положительным зарядом ионов.

В электрическом поле Е электроны ускоряются в направлении поля и возникает ток. Плотность тока j = neVE определяется концентрацией электронов n, их зарядом е = 1,6· 10−19Кл и средней скоростью VE направленного (упорядоченного) движения под действием электрического поля Е. Ускоренные электроны, то есть электроны, у которых скорость VE увеличивается в поле Е, рассеиваются на тепловых колебаниях решетки, примесях и других неоднородностях, передавая решетке приобретенную в электрическом поле кинетическую энергию:

Підпис: 
Рис. 12. Энергетические спектры металла в нор-мальном (а) и сверхпроводящем (б) состояниях. ∆ — ширина области энергетических состояний элек-тронов, из которых рассеяние энергетически невы-годно. Черными стрелками показаны возможные изменения энергии электронов при рассеянии.

которая выделяется в виде джоулева тепла (стрелки на рис. 12а). После рассеяния электроны возвращаются к своему начальному значению энергии еF. Поскольку электроны в металлах никак не связаны между собой, а энергетический спектр квазинепрерывен, любые сколь угодно малые значения энергии, приобретенные в Е, могут при рассеянии передаваться решетке.

Отсутствие электрического сопротивления в сверхпроводящем состоянии указывает на то, что по каким-то причинам электроны перестают рассеиваться кристаллической решеткой. Речь идет о токах 0 <js <jс = neVc, а следовательно, скоростях Vs направленного движения сверхпроводящих электронов 0 < Vs < Vc и соответственно изменениях энергии 0 < mVFVs< mVFVc. Это означает, что в энергетическом спектре сверхпроводника возникает область энергий над энергией еF, шириной ~mVFVC, в которой электроны не рассеиваются решеткой (рис. 12б). Электроны начинают рассеиваться лишь после того, как увеличение кинетической энергии их движения m VF Vs становится больше m VF Vc. Исходя из самых общих соображений, можно предположить, что рассеяния не происходит потому, что при таких значениях энергии оно энергетически невыгодно, то есть приводит к увеличению общей энергии (кинетической и потенциальной) коллективизированных электронов. Если рассматривать только кинетическую энергию (как в нормальных металлах), то при рассеянии она всегда уменьшается и, таким образом, процессы рассеяния энергетически выгодны при любых значениях энергии электронов.

(

19)

Чтобы они стали невыгодны (и не происходили бы), нужно, чтобы электроны в области еF < е < mVFVc обладали отрицательной потенциальной энергией, то есть притягивались бы друг к другу, и эта энергия исчезала бы при рассеянии. Обозначим модуль этой энергии ∆. Чтобы рассеяние в указанной области было энергетически невыгодно, ∆ должно быть равно

Страницы: 1 2 3