Представления о намагничивании агрегативно-устойчивых полидисперсных магнитных жидкостей в рамках одночастичной модели
где - намагниченность насыщения вещества частиц,
- объемная концентрация дисперсной фазы в образце объемом
.
Рисунок 5. Кривые намагничения магнитных жидкостей, с одинаковой объемной концентрацией, но отличающихся средним размером дисперсных частиц (1-d=14нм, 2-d=9нм)
Таким образом, начальные участки кривых намагничивания магнитных жидкостей, имеющих одинаковую объемную концентрацию дисперсных частиц, должны иметь различную крутизну, определяемую характерным размером дисперсных частиц. На рисунке 5 приведены кривые намагничивания магнитных жидкостей с одинаковой объемной концентрацией магнетита, но различным диаметром частиц (d = 9 нм, d = 14 нм), полученные с помощью вибрационного магнетометра [15 Моя дисс.]. Как и следует из теории Ланжевена, для МЖ с большим магнитным моментом неравенство начинает выполняться при меньшем значении напряженности поля. Проведение расчетов с целью получения информации о процессе намагничивания из экспериментально полученных кривых
требует знания функции распределения частиц по размером, выбор которой связан с некоторым произволом. Использование получивших в последнее время распространение компьютерных технологий позволяет непосредственное использование гистограмм распределения без аппроксимации их к конкретной функции. В этом случае, законом Ланжевена удобно пользоваться в виде:
, (1.10)
откуда для слабых полей
.
Последнее выражение легко представить [16?] в виде:
, (1.11)
где - намагниченность насыщения вещества частицы (магнетита),
- намагниченность насыщения магнитной жидкости (
),
- доля частиц с диаметром
. С учетом того, что
, для магнитной восприимчивости магнитной жидкости справедливо выражение:
(1.12)
Как видно из (1.10) зависимость крутизны начального участка кривой намагниченности от размера частиц определяется выражением , которая может быть найдена из гистограммы распределения дисперсных частиц по размерам. Сравнение (1.12) с (1.4) показывает, что при проведении магнитогранулометрических расчетов в области слабых полей с применением (1.4) в случае полидисперсности системы величина
определяется выражением:
(1.13)