Расчет реакции линейной цепи на входное воздействие произвольного вида с применением временных характеристик цепи

Страница 1

Раньше мы рассматривали два вида входного воздействия:

1) xвх= δ(t)-на входе будет импульсная характеристика g(t);

2) xвх= 1(t)-переходная характеристика h(t).

При произвольном заданном виде входного воздействия, в линейной цепи тоже можно найти реакцию. Для этого годятся и g(t) и h(t) и передаточная функция H(p), но в зависимости от формы входного сигнала, сложности цепи и того математического аппарата, которым располагаешь, более удобно будет применить какую-то одну из этих характеристик.

Рассмотрим применение переходной характеристики h(t):

1) На входе действуют прямоугольным импульсом

Воспользуемся принципом наложения и представим этот импульс в виде двух скачков Um1(t) и -Um1(t-tu).

Если нам известна переходная характеристика на h(t), то реакция на каждый скачок записывается очень просто Umh(t) и -Umh(t-tu) (h(t)=1-e-t/τ).

Вся реакция определяется сложением этих двух графиков.

Т.е. для 0≤t<tu Uвых(t)=Umh(t), t≥tu Uвых(t)=Umh(t)–Umh(t-tu).

2) Входной сигнал – функция, которая в некоторые моменты времени изменяется скачком, а между этими моментами постоянно.

И в этом случае задача решается просто: раскладываем входной сигнал на совокупность скачков и записываем для каждого интервала времени свое выражение для реакции:

0≤t<10-3 xвых=5∙h(t)

10-3≤t<2∙10-3 xвых=5∙h(t)+10∙h(t-10-3)

t≥2∙10-3 xвых=5∙h(t)+10∙h(t -10-3) -18∙h(t -2∙10-3).

Все такие задачи решаются с помощью h(t).

1) Входной сигнал в некоторый момент времени имеет скачки, а между

этими моментами времени плавно изменяется по тому-то закону (или вообще плавно изменяется без скачков).

Представим себе, что этот сложный сигнал приближенно м.б. составлен из нескольких скачкообразных воздействий (первое воздействие имеет амплитуду xвх(0) и возникает в момент t=0, второе воздействие возникает в некоторый момент t1 и имеет амплитуду xвх(t1)-xвх(0)=∆xвх(t1), третий сигнал поступает в момент t2 и имеет амплитуду ∆xвх(t2) и т.д.). Значит можно написать, что для некоторого момента t:

xвх(t)≈xвх(0)1(t)+∑∆xвх(tj)1(t-tj) (*).

В сумме учитывая все те ступеньки, которые возникли до нашего момента времени t. Если ступеньки брать помельче, выражение будет получаться поточнее, но все равно приближенно. Получим теперь точное выражение. В нашем случае:

xвых(t)≈xвх(0)h(t)+∑∆xвх(tj)∙h(t-tj) (**).

Известно, что ∆xвх(tj)/∆tj≈x(tj) и тогда (**) перепишется xвых(t)≈xвх(0)∙h(t)+∑xвх′(tj)∆tjh(t-tj). Уменьшая ∆tj до dtj вместо суммы получим интеграл: (для удобства записи tj→λ)

Если бы функция имела скачки не только в момент 0, но и в какие-то другие моменты. Пришлось бы для каждого интервала времени в котором функция непрерывна, записывать свои выражения отличающиеся друг от друга наличием реакции на скачки случившиеся до рассмотрения момента времени t.

Пример: Есть h(t)=0,5e-500t. Надо найти реакцию цепи на входное воздействие.

Описывает входное воздействие аналитически. В нашем случае можно считать, что в интервале от 0 до 10-3 Uвх1(t)=a+b∙t:

30=10+b∙10-3; a=10; b=2∙104.

Uвх2(t)=15+A∙e-t/τ ; τ=8∙10-4 ; t/τ=10-3/8∙10-4 ;

Uвх2(t=10-3)=5=15+A∙e-1,25; A≈-30.

Теперь для каждого интервала времени записываем свое выражение:

0≤t<10-3

Страницы: 1 2