Расчет реакции линейной цепи на входное воздействие произвольного вида с применением временных характеристик цепи
Раньше мы рассматривали два вида входного воздействия:
1) xвх= δ(t)-на входе будет импульсная характеристика g(t);
2) xвх= 1(t)-переходная характеристика h(t).
При произвольном заданном виде входного воздействия, в линейной цепи тоже можно найти реакцию. Для этого годятся и g(t) и h(t) и передаточная функция H(p), но в зависимости от формы входного сигнала, сложности цепи и того математического аппарата, которым располагаешь, более удобно будет применить какую-то одну из этих характеристик.
Рассмотрим применение переходной характеристики h(t):
1) На входе действуют прямоугольным импульсом
Воспользуемся принципом наложения и представим этот импульс в виде двух скачков Um1(t) и -Um1(t-tu).
Если нам известна переходная характеристика на h(t), то реакция на каждый скачок записывается очень просто Umh(t) и -Umh(t-tu) (h(t)=1-e-t/τ).
Вся реакция определяется сложением этих двух графиков.
Т.е. для 0≤t<tu Uвых(t)=Umh(t), t≥tu Uвых(t)=Umh(t)–Umh(t-tu).
2) Входной сигнал – функция, которая в некоторые моменты времени изменяется скачком, а между этими моментами постоянно.
И в этом случае задача решается просто: раскладываем входной сигнал на совокупность скачков и записываем для каждого интервала времени свое выражение для реакции:
0≤t<10-3 xвых=5∙h(t)
10-3≤t<2∙10-3 xвых=5∙h(t)+10∙h(t-10-3)
t≥2∙10-3 xвых=5∙h(t)+10∙h(t -10-3) -18∙h(t -2∙10-3).
Все такие задачи решаются с помощью h(t).
1) Входной сигнал в некоторый момент времени имеет скачки, а между
этими моментами времени плавно изменяется по тому-то закону (или вообще плавно изменяется без скачков).
Представим себе, что этот сложный сигнал приближенно м.б. составлен из нескольких скачкообразных воздействий (первое воздействие имеет амплитуду xвх(0) и возникает в момент t=0, второе воздействие возникает в некоторый момент t1 и имеет амплитуду xвх(t1)-xвх(0)=∆xвх(t1), третий сигнал поступает в момент t2 и имеет амплитуду ∆xвх(t2) и т.д.). Значит можно написать, что для некоторого момента t:
xвх(t)≈xвх(0)1(t)+∑∆xвх(tj)1(t-tj) (*).
В сумме учитывая все те ступеньки, которые возникли до нашего момента времени t. Если ступеньки брать помельче, выражение будет получаться поточнее, но все равно приближенно. Получим теперь точное выражение. В нашем случае:
xвых(t)≈xвх(0)h(t)+∑∆xвх(tj)∙h(t-tj) (**).
Известно, что ∆xвх(tj)/∆tj≈x(tj) и тогда (**) перепишется xвых(t)≈xвх(0)∙h(t)+∑xвх′(tj)∆tjh(t-tj). Уменьшая ∆tj до dtj вместо суммы получим интеграл: (для удобства записи tj→λ)
Если бы функция имела скачки не только в момент 0, но и в какие-то другие моменты. Пришлось бы для каждого интервала времени в котором функция непрерывна, записывать свои выражения отличающиеся друг от друга наличием реакции на скачки случившиеся до рассмотрения момента времени t.
Пример: Есть h(t)=0,5e-500t. Надо найти реакцию цепи на входное воздействие.
Описывает входное воздействие аналитически. В нашем случае можно считать, что в интервале от 0 до 10-3 Uвх1(t)=a+b∙t:
30=10+b∙10-3; a=10; b=2∙104.
Uвх2(t)=15+A∙e-t/τ ; τ=8∙10-4 ; t/τ=10-3/8∙10-4 ;
Uвх2(t=10-3)=5=15+A∙e-1,25; A≈-30.
Теперь для каждого интервала времени записываем свое выражение:
0≤t<10-3