Статистика Ферми

Страница 1

Для нахождения концентрации основных и неосновных носителей в кристаллической решетке полупроводника в состоянии равновесия применяется статистика Ферми.

Электронная проводимость в полупроводниковых материалах создается за счет переноса носителей, находящихся в зоне проводимости и валентной зоне. В действительности эти зоны представляют собой спектр энергетических состояний, в которых электрон может находиться при перемещении в кристаллической решетке. Зона проводимости имеет более высокий энергетический уровень, чем валентная зона, и поэтому при данной температуре является менее заполненной. Зоны разделяются энергетическим промежутком, называемым запрещенной зоной.

При нормальных условиях электрон, находящийся в кристаллической решетке, не может занимать энергетические уровни, расположенные в запрещенной зоне. Энергетический промежуток между самым высоким разрешенным состоянием в валентной зоне и самым низким разрешенным состоянием в зоне проводимости называется шириной запрещенной зоны. Для разных полупроводниковых материалов она имеет разное значение.

Упрощенная модель распределения электронов по энергетическим состояниям в зоне проводимости и в валентной зоне показана на рисунке 17 Обычно экстремумы двух зон в импульсном пространстве смещены относительно друг друга. Исключением составляют проводники с прямыми переходами.

Электроны, заполняющие состояния в зоне проводимости, и дырки при приложении внешнего электрического поля свободно перемещаются, вызывая прохождение тока. Оба типа носителей присутствуют одновременно во всех полупроводниках. Применяя статистику Ферми, можно вычислить равновесные концентрации как основных, так и не основных носителей, находящихся в кристаллической решетке.

Рисунок 17 .Зонная структура полупроводника с прямыми переходами.

Функцию распределения Ферми записывают как

f (E)=1/1+exp[(E-)/kt]. (44)

Функция Ферми определяет вероятность того, что данное состояние с энергией Е занято электроном. Величина EF , называемая энергией или уровнем Ферми. Уровень Ферми характеризует связь объемных свойств полупроводникового материала с вакуумом и является постоянным. Если известная зависимость плотности состояний в зоне проводимости и валентной зоне от энергии, то положение уровня Ферми даст возможность определить количество электронов, находящихся в данных энергетических состояниях, и количество вакантных состояний.

Рисунок 18.Поведение функции Ферми при изменении температуры.

Интегрирование в пределах обеих зон даст концентрацию электронов в зоне проводимости и концентрацию дырок в валентной зоне полупроводника. Поведение функции Ферми при изменении температуры показано на рисунке 18.

Из рисунка 18 следует, что уровень Ферми обычно лежит в запрещенной зоне между валентной зоной и зоной проводимости. При легировании кремния атомами примеси, имеющей пять валентных (кремний имеет четыре валентных электрона), в зоне проводимости кремния появляется лишний электрон. Материал приобретает проводимость n- типа, и уровень Ферми перемещается в сторону самого нижнего энергетического уровня зоны проводимости EC . Этот тип примесей называется донорным. Аналогичным образом, когда вводится примесь, атомы которой имеют только три валентных электрона (акцепторы), они ионизируются электронами валентной зоны, и появляются дырки. Полупроводник приобретает проводимость p – типа, и уровень Ферми сдвигается в сторону энергетического потолка валентной зоны ЕV.

После интегрирования по энергетическим уровням обеих зон получаем следующие выражения:

n = NCexp[-(EC-EF)/kT] (45)

p = NVexp[-(EF-EV)/kT], (46)

где NC и NV – соответственно плотности состояний в зоне проводимости и валентной зоне.

Перемножив, левые и правые части (45) и (46), получим произведение концентраций неосновных и основных носителей тока для одного и того же материала. Величина этого произведения не зависит от положения уровня Фермии, следовательно, от концентрации легирующей примеси:

np= NCNVexp (EV- EC)/ kT =NCNVexp(-∆E/kT), (47)

где NCNVexp(-∆E/kT)

представляет собой постоянную, которая зависит от температуры и обычно обозначается как n2i (квадрат концентрации собственных носителей в чистом материале). Таким образом,

Страницы: 1 2