Проектирование асинхронного двигателя

Страница 4

Позже теория Фёрстера была обобщена Декстером на случай мультипольных и обменных взаимодействий [11]. Дальнейшее ее развитие состояло в учете макроскопических параметров, влияющих в основном на константу скорости передачи энергии. При этом считается, что взаимодействие между компонентами донорно – акцепторной пары не влияет на константы скоростей как излучательной, так и безызлучательной дезактивации возбуждений акцептора, поскольку для приготовления начального и конечного квантовых состояний берутся невозмущенные волновые функции изолированных молекул донора и акцептора энергии в соответствующих состояниях. Именно это положение теории Фёрстера – Декстера подвергается критике в Новой теории переноса энергии, разрабатываемой в последнее время В.Я. Артюховым и Г.В. Майером. Перенос энергии за счет обменных взаимодействия становится актуальным, когда кулоновская часть электронного матричного элемента взаимодействия в (1.2) значительно меньше обменной

. (1.5)

Неравенство (1.5) выполняется для интеркомбинационных синглет-триплетных переходов в органических молекулах. Поэтому основной вклад в в этом случае дает обменный интеграл. Взаимодействия такого типа названы В.Л. Ермолаевым и А.Н. Терениным обменно-резонансными, и хотя в литературе известны и другие термины, этот термин наиболее широко используется в настоящее время специалистами.

Рассмотрим более подробно межмолекулярный триплет-триплетный перенос энергии электронного возбуждения, происходящий по обменно-резонансному механизму.

Если представить электронные волновые функции донора и акцептора в виде произведения координатной волновой функции на спиновую , то обменный интеграл имеет вид

. (1.6)

Здесь учтено, что описывает кулоновское взаимодействие, которое не действует на спиновые переменные.

Из (1.6) следует, что обменный интеграл , если

Возбужденное и основное состояния могут иметь разную мультипольность, т. е.

(1.7)

Следовательно, мультипольность состояний донора и акцептора после акта передачи должна измениться одновременно.

Учитывая, что спектр излучения донора и поглощения акцептора определяются интегралами Франка-Кондона и используя (1.3) Декстер [11] записал выражение для вероятности переноса энергии по обменно-резонансному механизму в следующем виде

(1.8)

здесь — нормированный спектр поглощения акцептора.

Поскольку величина обменных взаимодействий пропорциональна плотности перекрывания электронных облаков донора и акцептора энергии, которая экспоненциально убывает с расстоянием между ними, то параметр , в котором скрыта зависимость от расстояния, можно представить в виде , где L — средний эффективный боровский радиус.

Таким образом, Декстер показал, что вероятность переноса энергии по обменно - резонансному механизму пропорциональна интегралу перекрытия спектра излучения донора со спектром поглощения акцептора, экспоненциально убывает с увеличением расстояния между молекулами акцептора и донора и, в отличие от индуктивно-резонансного механизма, не зависит от сил осцилляторов переходов в доноре и акцепторе.

Установить непосредственную связь с экспериментально определяемыми параметрами Декстеру не удалось. Позже в работе [24] Инокути и Хирояма провели теоретическое рассмотрение тушения фосфоресценции донора по обменно-резонансному механизму, основываясь на предложенной в [11] экспоненциальной зависимости константы скорости переноса энергии от расстояния между компонентами донорно-акцепторной пары. Обозначив , где – критический радиус переноса они записали выражение для в виде

Страницы: 1 2 3 4 5 6 7 8 9