Проектирование асинхронного двигателя

Страница 5

. (1.9)

Здесь , где – средняя длительность затухания донора в отсутствии акцептора.

Обобщая основные положения и выводы теории межмолекулярного переноса энергии в конденсированных средах по обменно-резонансному механизму Ферстера-Декстера можно сказать следующее. Взаимодействие между компонентами донорно-акцепторной смеси увеличивает константу скорости безызлучательной дезактивации триплетных возбуждений в молекулах донора только за счет передачи энергии акцептору. Константы скоростей излучательной дезактивации триплетных молекул донора и триплетных молекул акцептора, а также константа скорости безызлучательной дезактивации триплетных молекул акцептора при этом должны оставаться такими же каковыми они были в однокомпонентных растворах.

Следствием этого должно быть отсутствие влияния донора на время затухания фосфоресценции акцептора и независимость квантового выхода сенсибилизированной фосфоресценции от концентрации раствора. Следует заметить, что под квантовым выходом сенсибилизированной фосфоресценции имеется ввиду, здесь и в дальнейшем, отношение числа квантов излучаемых акцептором к числу потушенных триплетных молекул донора за это же время в результате передачи энергии [25] (по определению В.Л. Ермолаева и А.Н. Теренина). Отношение же числа излученных квантов акцептором в единицу времени к числу поглощаемых квантов света донором за это же время будем называть абсолютным квантовым выходом сенсибилизированной фосфоресценции, как и в [25].

Последовательный критический анализ теории Ферстера для описания переноса энергии с позиций современной теории безызлучательных переходов был проведен В.Я. Артюховым и Г.В. Майером в [12]. Показано, что основные положения теории Ферстера ошибочны с точки зрения современной теории электронных переходов [12,13,26,27]. Так же установлены некоторые противоречия между выводами теории и экспериментальными фактами. При исследовании бихромофорных систем, содержащих ароматические молекулы, так же установлено, что величина ориентационного фактора в теории Ферстера часто не согласуется с экспериментальными данными по переносу энергии при строго определенной относительной ориентации молекул донора и акцептора.

Согласно [12,13] волновые функции и оператор, инициирующий перенос электронной энергии, в теории Ферстера определены неправильно. Волновые функции в выражении (1.1) и начального и конечного состояний описывают возбужденные электронные состояния бимолекулярной системы. Если оператор не содержит спиновых переменных, то возможен переход только между состояниями одинаковой мультиплетности. Оператор в (1.1) по Ферстеру не зависит от спиновых переменных и поэтому не может инициировать, согласно [12,13], электронный переход (перенос энергии).

Наиболее прост для рассмотрения предложенной теории случай синглет-синглетного переноса энергии при большом расстоянии между молекулами. При пренеб­режении взаимодействием между молекулами (в выражении для полного электронного гамильтониана бихроморфной системы (1.10), здесь ) для любого состояния системы волновая функция имеет вид прямого произведения волновых функций молекул (1.11)

Все состояния этой системы соответствуют невозмущенной системе в теории возмущений. С физиче­ской точки зрения такая ситуация соответствует полной изолированности подсистем общей системы, т. е. набор состояний системы является просто суммой состояний подсистем. Все свойства полной системы (в том числе и спектрально-люминесцентные) будут аддитивны по отношению к аналогичным свойствам подсистем. Перенос энергии электронного возбуждения в такой системе может происходить только за счет реабсорбции излучения донора молекулой акцептора. Здесь волновые функции молекул есть прямые произведения электронной, колебательной и спиновой функций. Учет межмолекулярного взаимодействия () изменяет гамильтониан только электронной задачи, так как оператор не со­держит взаимодействий, которые включают неадиабатичность или смешивание спиновых состояний. С точки зрения квантовой теории общая электронная волновая функция системы в этом случае не может быть представлена в виде (1.11). Возникают новые состояния системы с электронными функциями . Однако квантово-химические расчеты показывают, что можно по-прежнему классифицировать состояния системы как набор возмущенных состояний подсистем: (1.12) (1.13)

Страницы: 1 2 3 4 5 6 7 8 9 10