Тепловые процессы и материалы при плазменном нагреве

Страница 1

Процессы поверхностного упрочнения требуют применения концентрированного источника нагрева с плотностью теплового потока на поверхности материала 103

- 106

Вт/см2

. Основным фактором, отличающим плазменный нагрев от лазерного нагрева, является механизм взаимодействия источника энергии с материалом. При лазерном нагреве световой поток излучения, направленный на поверх­ность материала, частично отражается от нее, а частично проходит в глубь материа­ла излучение. Излучение, проникающее в глубь материала, практически полностью поглоща­ется свободными электронами проводимости в приповерхностном слое толщиной 0,1 - 1 мкм [1]. Поглощение приводит к повышению энергии электронов, и вследст­вие этого, к интенсификации их столкновений между собой и передаче энергии кристаллической решеткой металла. Тепловое состояние металла характеризующееся двумя температурами: электронной Те и решеточной Тi , причем Те» Тi. С тече­нием времени (начиная со времени релаксации tР ~ 10-9с) разность температур Те- Тi становится минимальной и тепловое состояние материала можно охарактеризовать общей температурой Тм. Дальнейшее распределение энергии вглубь материала осуществляется путем теплопроводности.

Нагрев поверхности материала плазменной струей осуществляется за счет вынужденного конвективного и лучистого теплообмена:

(2.1.)

q = q

k

+

Для приближенных расчетов тепловых потоков в поверхности используется модель лучистого и конвективного теплообмена основанная на

теории погранично­го слоя [2], Плотность конвективного теплового потока определяется из выражения:

(2.2.)

где λ – коэффициент теплопроводности,

Н - энтальпия единицы массы,

Кт - термодиффузионный коэффициент,

у - координата, нормальная к обрабатываемой поверхности.

В общем виде конвективный нагрев поверхности обусловлен переносом энергии плазменной струи под действием теплопроводности, диффузии. На практике используют более простое выражение:

(2.3.)

где α–коэффициент теплопроводности

Тплаз - температура плазменной струи на внешней границе

пограничного слоя,

Тпов - температура поверхности.

Связь между α и параметрами плазменной струи выражается через критериальные зависимости (число Нуссельта, Прандля, Рейнольдса и т.д.) выбор для различных случаев взаимодействия плазмы с поверхностью приведен в работах. [2].

Согласно данных работ [3] доля лучистого переноса энергии от плазменной струи к поверхности металла составляет 2-8% от общего баланса энергии. В случае использования импульсной плазменной струи доля лучистого теплообмена возрастает до 20-30%. Лучистый поток к единице площади поверхности в нормальном направлении определяется следующим образом [4]

(2.4.)

где ξ

1

-

интегральная поглощательная способность поверхности,

ξ

2

-

степень

черноты плазмы

σс

-

постоянная Стефана-Больцмана

Т -температура плазмы

Учитывая, что теплообмен между струей и поверхностью в основном определяется конвективной составляющей теплового потока, то пренебрегая лучистым теплообменом (за исключением импульсной плазменной струи)

можно рассчитать тепловой поток по выражению Фея-Риддела [5]

(2.5.)

или

(2.6)

где Рг - усредненное число Прандля,

(ρµ)ω

, (ρµ)s

- плотность и коэффициент динамической вязкости плазмы при

температурах, соответственно, поверхности тела и внешней границы

пограничного слоя,

Lе - число Льгоса - Семенова,

Ld - энергия диссоциации, умноженная на весовую долю атомов,

со­ответствующую температуре струи,

- градиент скорости в критической точке, равный ~ U

плазм / d сопла

hs-

полная энтальпия плазменной струи.

При нагреве поверхности металла плазменной дугой (плазмотрон прямого действия), эффективность нагрева возрастает за счет электронного тока q

е

(2.7.)

q = q

k

+ qл

+

Дополнительная тепловая мощность за счет электронного тока рассчитыва­ется из выражения:

(2.8.)

Эффективный КПД плазменно-дугового нагрева на 10-30 % выше, чем при использовании плазменной струи и может достигать 70=85 % [3,6]. Энергетический баланс плазменного нагрева при атмосферном давлении выглядит следующим образом: 70 % - конвективный теплообмен;

Страницы: 1 2 3 4 5 6