Тепловые процессы и материалы при плазменном нагреве

Страница 2

20 % - электронный ток;

10 % - лучистый теплообмен.

При использовании плазменной струи (дуги), как источника тепловой энер­гии, наибольший интерес представляет распределение теплового потока по пятну нагрева. Распределение удельного теплового потока q2

в пятне нагрева приближен-но описывается законом нормального распределения Гаусса [7]

q

z

= q2

m

exp

(-

Kr

2

)

(2.9.)

где К - коэффициент сосредоточенности, характеризующий форму кривой нормального распределения, а следовательно концентрацию энергии в пятне нагре­ва,

q2m

- максимальный тепловой поток.

Коэффициент сосредоточенности играет большое значениев процессах плазменного упрочнения, т.к. - регулирует скорость нагрева поверхностного слоя металла. Максимальная плотность теплового потока в центре пятна нагрева связана коэффициентом сосредоточенности выражением [7]

(2.10.)

Теплообмен между плазменной струей и упрочняемой поверхностью происходит в области пятна нагрева, условный диаметр которого равен:

На границе этого пятна нагрева удельный тепловой поток составляет 0.05 % от максимального g

[7].

Параметры режима работы плазмотрона оказывают сильное влияние на коэффициент сосредоточенности. С увеличением силы тока К

возрастает. Уменьшение диаметра сопла (

d

!с≤5)

увеличивает К

. С увеличением расхода плазмообразующего газа коэффициент сосредоточенности имеет максимум, рис.2.

На коэффициент сосредоточенности оказывает большое влияние способ подачи газа, геометрия сопла и электрода. В таблице 2.1. приведены экспериментальные и расчетные величины эффективного КПД нагрева, коэффициента сосредоточенности, тепловой плазменной дуги в зависимости от способа подачи плазмообразующего газа, геометрии сопла и катода. Видно, что переход от максиальной к тангенциальной подаче газа в сопло (при постоянном расходе) увеличивает коэффициент сосредоточенности на 15-40 % при одновременном увеличении эффективного КПД нагрева. Параболическая форма сопла формирует хорошо направленный плазменный поток, по сравнению с другими формами, однако степень сжатия дуги при этом снижается.

Использование кольцевого катода предпочтительнее при тангенциальной подаче газа, т.к. в случае аксиальной подачи нарушается однородность столба дуги

Диаметр

сопла, мм

Длина канала сопла(мм)

U,B

I,A

Способ подачи

газа в сопло

Геометрия

Эффективный КПД нагрева, %

Коэффициент сосредоточенности дуги, см.

сопла

катода

1

2

3

4

5

6

7

8

9

2

4,4

35

100

тангенциальный

цилиндр

стержень

68

13,2

2

4,4

35

100

------/------

парабола

------/------

60

10,1

2

4,4

35

100

------/------

раструб

------/------

49

6,5

2

4,4

35

200

------/------

цилиндр

------/------

70

15,1

2

4,4

25

200

------/------

парабола

------/------

63

11,8

2

4,4

25

200

------/------

раструб

------/------

51

6,9

3

3

3

3

4,4

3,0

3,0

3,0

25

200

аксиальный

цилиндр

стержень

58

10,8

25

200

------/------

цилиндр

------/------

50

7,2

25

200

------/------

цилиндр

------/------

39

4,8

25

200

Аксиально-тангенциальный

цилиндр

------/------

61

11,2

4

5,0

23,5

300

аксиальный

цилиндр

стержень

63

11,5

4

5,0

23,5

300

аксиальный

парабола

------/------

54

8,1

4

5,0

23,5

300

аксиальный

раструб

------/------

50

5,1

4

5,0

23,5

300

Аксиально-тангенциальный

цилиндр

------/------

70

15,2

5

6,2

23

150

тангенциальный

цилиндр

кольцо

50

5,9

56,8

24

200

------/------

------/------

------/------

55

6,2

5 6,9

26

300

------/------

------/------

------/------

60

6,8

2 4

35

150

тангенциальный

цилиндр

стержень

65

17,8

33,5

24

300

------/------

------/------

------/------

60

16,8

4 6,2

28

300

------/------

------/------

------/------

64

17,1

Страницы: 1 2 3 4 5 6 7